
26                                                          TELICOM 35, No. 2 — Second Quarter 2023

Identification of Driver Genes for Critical 
Forms of COVID-19 in a Deeply Phenotyped 
Young Patient Cohort 

Authors: Raphael Carapito, Richard Li, Julie 
Helms, Christine Carapito, Sharvari Gujja, 
Véronique Rolli, Raony Guimaraes, Jose 
Malagon-Lopez, Perrine Spinnhirny, Alexandre 
Lederle, Razieh Mohseninia, Aurélie Hirschler, 
Leslie Muller, Paul Bastard, Adrian Gervais, 
Qian Zhang, François Danion, Yvon Ruch, 
Maleka Schenck, Olivier Collange, Thiên-Nga 
Chamaraux-Tran, Anne Molitor, Angélique 
Pichot, Alice Bernard, Ouria Tahar, Sabrina 
Bibi-Triki, Haiguo Wu, Nicodème Paul, Sylvain 
Mayeur, Annabel Larnicol, Géraldine Laumond, 
Julia Frappier, Sylvie Schmidt, Antoine Hanauer, 
Cécile Macquin, Tristan Stemmelen, Michael 
Simons, Xavier Mariette, Olivier Hermine, 
Samira Fafi-Kremer, Bernard Goichot, Bernard 
Drenou, Khaldoun Kuteifan, Julien Pottecher, 
Paul-Michel Mertes, Shweta Kailasan, M Javad 
Aman, Elisa Pin, Peter Nilsson, Anne Thomas, 
Alain Viari, Damien Sanlaville, Francis 
Schneider, Jean Sibilia, Pierre-Louis Tharaux, 
Jean-Laurent Casanova, Yves Hansmann, Daniel 
Lidar, Mirjana Radosavljevic, Jeffrey R Gulcher, 
Ferhat Meziani, Christiane Moog, Thomas W 
Chittenden, Seiamak Bahram. 
 
Understanding COVID-19 in Young 
Individuals

As we gain more insight into the drivers of 
coronavirus disease 2019 (COVID-19), it is 
essential that these drivers be understood in the 
context of different populations, including those 

thought to be at low risk of developing severe 
disease. Here, Carapito et al. used a multi-omics 
approach to identify drivers of critical COVID-19 
in a young, comorbidity-free patient cohort. The 
authors used an ensemble of machine learning, 
deep learning, quantum annealing, and structural 
causal modeling to identify multiple candidate 
driver genes, including the metalloprotease, 
ADAM9. Together, these findings suggest that 
drivers of critical COVID-19, and thus treatment, 
may differ based on the cohort.

ABSTRACT 

The drivers of critical coronavirus disease 
2019 (COVID-19) remain unknown. Given 
major confounding factors such as age and 
comorbidities, true mediators of this condition 
have remained elusive. We used a multi-omics 
analysis combined with artificial intelligence in a 
young patient cohort where major comorbidities 
were excluded at the onset. The cohort included 
47 “critical” (in the intensive care unit under 
mechanical ventilation) and 25 “non-critical” (in 
a non-critical care ward) patients with COVID-19 
and 22 healthy individuals. The analyses included 
whole-genome sequencing, whole-blood RNA 
sequencing, plasma and blood mononuclear 
cell proteomics, cytokine profiling, and high-
throughput immunophenotyping. An ensemble 
of machine learning, deep learning, quantum 
annealing, and structural causal modeling were 
used. Patients with critical COVID-19 were 
characterized by exacerbated inflammation, 
perturbed lymphoid and myeloid compartments, 
increased coagulation, and viral cell biology. 
Among differentially expressed genes, we 
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observed up-regulation of the metalloprotease 
ADAM9. This gene signature was validated 
in a second independent cohort of 81 critical 
and 73 recovered patients with COVID-19 and 
was further confirmed at the transcriptional 
and protein level and by proteolytic activity. 
Ex vivo ADAM9 inhibition decreased severe 
acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) uptake and replication in human 
lung epithelial cells. In conclusion, within a 
young, otherwise healthy, cohort of individuals 
with COVID-19, we provide the landscape of 
biological perturbations in vivo where a unique 
gene signature differentiated critical from non-
critical patients. We further identified ADAM9 
as a driver of disease severity and a candidate 
therapeutic target. 

INTRODUCTION 
 
Unlike many viral infections and most respiratory 
virus infections, coronavirus disease 2019 
(COVID-19) is characterized by a complex and 
diversified spectrum of clinical manifestations 
(1). Upon infection with severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), 
age-, sex-, and phenotype-matched individuals 
can be classified within four distinct groups: 
(i) asymptomatic individuals, (ii) patients 
displaying influenza-like illnesses, (iii) patients 
affected by respiratory dysfunction who 
eventually need an external oxygen supply, and 
(iv) patients suffering from acute respiratory 
distress syndrome (ARDS) who need invasive 
mechanical ventilation in an intensive care unit 
(ICU). Although the last group represents only 
a small fraction of patients with COVID-19, 
this group encompasses the most critical form 
of the disease and has an average case-fatality 
rate of approximately 25% (2). Despite intense 
investigation, the fundamental question of 
why the course of the disease shows such a 
marked difference in an otherwise, apparently 
indistinguishable set of individuals remains 
unanswered (3–6). To better understand this 
issue, high-resolution molecular analyses should 
be applied to well-defined cohorts of patients 
and controls where a maximum of confounding 

factors have been eliminated. These factors 
include older age as well as a number of 
comorbidities, such as cerebrovascular disease, 
types 1 and 2 diabetes, chronic kidney disease, 
chronic obstructive pulmonary disease, or heart 
conditions (7).

Several studies have used single, or a restricted 
number of, omics technologies to uncover 
molecular processes associated with disease 
severity, usually in unfiltered critical patients 
with COVID-19. Systemic inflammation with 
high concentrations of acute-phase proteins 
[C-reactive protein (CRP), serum amyloid A 
(SAA), and calprotectin] (8) and inflammatory 
cytokines, particularly interleukin-6 (IL-6) and 
IL-1β (9–11), has been found to be a hallmark 
of disease severity. In contrast, after an initial 
burst shortly after infection, the type I interferon 
(IFN) response is impaired at the RNA (12) and 
protein (13) level. Severity was also correlated 
with profound immune dysregulation, including 
modifications in the myeloid compartment with 
increases in neutrophils (14, 15), decreases in 
nonclassical monocytes (8), and dysregulation 
of macrophages (10, 16). The lymphoid 
compartment is also modified by both B cell 
activation (17) and an impaired T cell response, 
characterized by skewing toward a T helper 
17 (TH17) phenotype (18, 19). Moreover, 
coagulation defects have been identified in 
critically ill patients who are prone to thrombotic 
complications (20–22). Nevertheless, the full 
spectrum of omics technologies has not been 
applied to a highly curated cohort of patients with 
COVID-19 and controls that was established by 
eliminating a number of key confounding factors 
that affect severity and death, such as older age 
and comorbidities, at onset.

In this cross-sectional study, we aimed to analyze 
the SARS-CoV-2–induced molecular changes 
that are characteristic of critical patients and 
differentiate them from non-critical patients. 
We hypothesized that certain host driver genes 
might be responsible for the development 
of critical illness and that those genes might 
represent therapeutic targets. To test these 
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hypotheses, we performed an ensemble artificial 
intelligence (AI) and machine learning (ML)–
based multi-omics study of 47 young (under 
50 years of age) patients with COVID-19 without 
comorbidities admitted to the ICU and under 
mechanical ventilation (“critical” patients) 
versus matched patients with COVID-19 needing 
only hospitalization in a non-critical care ward 
(25 “non-critical” patients) and an age- and sex-
matched control group of 22 healthy individuals 
not infected with SARS-CoV-2 (“healthy”). 
The multi-omics approach included whole-
genome sequencing (WGS), whole-blood RNA 
sequencing (RNA-seq), quantitative plasma 
and peripheral blood mononuclear cell (PBMC) 
proteomics, multiplex plasma cytokine profiling, 
and high-throughput immune cell phenotyping. 
These analyses were complemented by the status 
of anti–SARS-CoV-2 neutralizing antibodies and 
multitarget immunoglobulin G (IgG) serology 
as well as the measurement of neutralizing 
anti–type I IFN autoantibodies in the entire 
cohort. 
 
RESULTS 
 
A Young, Comorbidity-Free Patient Cohort 
Was Analyzed by a Multiomics Approach 

The present study focused on patients who 
were hospitalized for COVID-19 at a university 
hospital network in northeast France (Alsace) 
during the first French wave of the pandemic 
(March to April 2020) before the routine use 
of corticosteroids. A total of 72 patients under 
50 years of age without comorbidities were 
enrolled. Fifty-three of these patients were men 
(74%), and the median age of the patients was 
40 [interquartile range (IQR) 33; 46] years. 
The patients were divided into two groups: (i) a 
critical group consisting of 47 (65%) patients 
hospitalized in the ICU due to moderate or severe 
ARDS according to the Berlin criteria (23) with 
45 requiring invasive mechanical ventilation 
and 2 requiring high-flow nasal oxygen and 
noninvasive mechanical ventilation due to acute 
respiratory failure and (ii) a non-critical group 
consisting of 25 patients (35%) who stayed at 

a non-critical care ward. In the latter group, 19 
(76%) needed low-flow supplemental oxygen. 
Patients who were transferred from the non-
critical care ward to the ICU (n = 19) were 
considered critical patients, and for these, the 
sampling was done upon ICU admission in the 
same conditions as patients directly admitted to 
the ICU. The median simplified acute physiology 
score (SAPS) II of the patients at the ICU was 
38 [IQR 33; 47] points, and the median pressure 
of arterial oxygen to fractional inspired oxygen 
concentration (PaO2/FiO2) ratio of these patients 
was 123 [IQR 95; 168] mmHg upon admission. 
All the patients were discharged from the hospital 
or were deceased at the time of data analysis. 
The overall hospital and day 28 mortality rate 
was 8.3% (six patients, all in the critical group, 
for a mortality of 13% in this group). The 
characteristics of the patients in both groups are 
summarized in Table 1.

On the basis of these two patient groups and an 
additional group of 22 healthy (SARS-CoV-2–
negative) sex- and age-matched controls, we 
applied a global multi-omics analysis strategy 
to identify pathways and drivers of ARDS 
(Fig. 1). PBMCs were analyzed by mass 
cytometry (CyTOF) and shotgun proteomics. 
Plasma samples were used for multiplex 
cytokine quantification and shotgun proteomics. 
Serum samples were used for multiplex IgG 
serology (24) and detection of anti–SARS-
CoV-2 neutralizing antibodies and anti–type I 
IFN neutralizing autoantibodies. Last, RNA-seq 
and WGS were performed using whole-blood 
samples. Unless otherwise specified, all measures 
were obtained from samples that were collected 
at the time of hospital admission (whether at the 
ICU or the non-critical care ward). Validation of 
the identified driver genes was performed using 
an ex vivo model of SARS-CoV-2 infection. The 
top 600 genes found by classification of patient 
cohort 1 were evaluated in a second, independent 
cohort of 81 critical patients and 73 recovered 
critical patients (table S1).
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Table 1
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Figure 1 (details on next page) 
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Critical Illness Is Characterized by a 
Proinflammatory Cytokine Storm and 
Changes in the T, B, Dendritic, and Monocyte 
Cell Compartments and Is Independent of the 
Extent of Viral Infection

The global proinflammatory cytokine profile 
showed significantly increased concentrations 
of IFN-γ (P = 0.034), tumor necrosis factor-α 
(TNF-α) (P = 0.022), IL-1β (P = 0.0002), 
IL-4 (P = 0.036), IL-6 (P < 0.0001), IL-8 
(P = 0.0004), IL-10 (P = 0.0002), and IL-12p70 
(P = 0.0221) in critical versus non-critical 
patients (Fig. 2A). This “cytokine storm” (25) 
was more pronounced in critical patients, as 
only IFN-γ, TNF-α, and IL-10 were higher in 

non-critical patients as compared to healthy 
controls. Although the disease severity was 
initially associated with an RNA-seq–based 
type I IFN signature, the absence of an increase 
in the plasma concentration of IFN-α in critical 
versus non-critical patients, the decrease in the 
IFN-α concentration during the ICU stay, and 
the reduction in the number of plasmacytoid 
dendritic cells, which are the main source of 
IFN-α, suggest that the IFN response is indeed 
impaired in critical patients (fig. S1) (12).

At a systemic level, lymphopenia is correlated 
with disease severity (Fig. 2B) (25–27). To 
further characterize the immune cells, we 
analyzed PBMCs by mass cytometry using 

Fig. 1: A multi-omics analytical strategy identifies key pathways and drivers of ARDS in 
COVID-19. 

(A) Forty-seven critical patients (C), 25 non-critical patients (NC), and 22 healthy controls (H) 
were enrolled in the study. PBMCs were isolated by density gradient and frozen until utilization 
for mass cytometry and whole proteomics. Plasma was used for cytokine profiling and whole 
proteomics. Serum was used to measure anti–type I IFN neutralizing antibodies, anti–SARS-CoV-2 
neutralizing antibodies, and multitarget antiviral serology. Whole blood was used for RNA-seq 
and whole-genome sequencing (WGS). The number of treated samples per group and per omics is 
indicated below each omics designation.  
 
(B) The RNA-seq pipeline is shown on the basis of the NC versus C comparison. To increase 
robustness of downstream analyses, an ensemble intelligence approach with seven algorithms 
was applied to multiple partitions of the RNA-seq data (see Materials and Methods) to classify 
NC versus C patients, performing differential analysis on each partition of the data. An ensemble 
ranking score across six of the seven algorithms and all partitions of the data was then determined, 
and the top 600 of those genes were used as the input for structural causal modeling to derive a 
putative causal network. To support the key findings from the first patient cohort, RNA-seq data 
from a second patient cohort consisting of 81 critical and 73 recovered critical patients were used. 
The data were partitioned analogously to the first patient cohort, but only the top 600 features from 
the first patient cohort were used to assess the informativeness of the gene signature.  
 
(C) Cytokines and immune cells were quantified. WGS data were used for eQTL analysis together 
with the gene counts from the RNA-seq. Proteomics data were subjected to differential protein 
expression and nGOseq enrichment analyses.  
 
(D) The key pathways and drivers resulting from the omics analyses in (B) and (C) were validated 
in a second cohort of 81 critical and 73 recovered critical patients; *P < 0.05 and ****P < 0.0001. 
The differential expression of ADAM9, the main driver gene, was compared to publicly available 
bulk RNA-seq data. Last, ex vivo infection experiments with SARS-CoV-2 were conducted to 
validate a driver gene candidate.
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Fig. 2. Immune profiling differentiates healthy individuals, non-critical patients with COVID-19, 
and critical patients with COVID-19. 

(A) The concentrations of proinflammatory cytokines in plasma were quantified by cytokine 
profiling assays or ELISA.  
 
(B) Absolute lymphocyte counts are shown. Each dot represents a single patient. The dashed 
horizontal line indicates the lower limit of normal lymphocyte concentrations.  
 
(C) viSNE maps are shown colored according to the cell density across the three groups. Red 
indicates the highest density of cells. The plots are representative of 40 critical patients, 23 non-
critical patients, and 22 healthy controls.  
 
(D to G) The proportions of modified lymphocyte subsets from patients with COVID-19 and 
healthy controls were determined by mass cytometry. Proportions of T cell subsets (D), B cell 
subsets (E), dendritic cells (F), and nonclassical monocytes (G) are shown. Each dot represents 
a single patient. In (A) and (D) to (G), the P values were determined with the Kruskal-Wallis 
test followed by Dunn’s posttest for multiple group comparisons; *P < 0.05, **P < 0.01, ***P < 
0.001, and ****P < 0.0001; ns, not significant. In (B), the P value was determined by a two-tailed 
unpaired t test; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. In (A), data are shown 
as box-and-whisker plots with medians, 25th to 75th percentiles, and maximal and minimal values 
and include n = 41 critical patients, n = 24 non-critical patients, and n = 21 healthy controls. In (B), 
(D), and (E) to (G), all data points are shown and bars represent means with n = 40 critical patients, 
n = 23 non-critical patients, and n = 22 healthy controls.

an immune profiling assay covering 37 cell 
populations. Visualization of stochastic neighbor 
embedding (viSNE) showed a cell population 
density distribution pattern that was specific to 
the critical group (Fig. 2C). This pattern could be 
partly linked to the known immunosuppression 
phenomenon in critical patients (12, 28, 29), 
which was characterized by marked differences 
in the T cell compartments, where memory CD4 
and CD8 T cells and TH17 cells were negatively 
correlated with disease severity (Fig. 2D). The 
latter observation is in line with the absence 
of a clear association between the plasma 
concentration of IL-17 and disease severity 
(Fig. 2A). In contrast, the B cell compartments 
of critical patients contained more naïve B cells 
and plasmablasts and fewer memory B cells than 
those of healthy controls (Fig. 2E). In accordance 
with previous reports (17), the number of 
plasmablasts tended to be higher in critical versus 
non-critical patients. Moreover, non-critical 
and critical patients were also characterized by 

lower numbers of dendritic cells and nonclassical 
monocytes (Fig. 2, F and G). The remaining cell 
populations are presented in fig. S2. Together, 
the results indicate that critical illness was 
characterized by a proinflammatory cytokine 
storm and notable changes in the T, B, dendritic, 
and monocyte cell compartments. These specific 
changes were independent from the extent of 
viral infection, as both the global anti–SARS-
CoV-2 antibody concentrations and their 
neutralizing activity were not different in critical 
versus non-critical patients (fig. S3, A and B).

To complete the immunologic profile, on the 
basis of findings suggesting that at least 10% 
of critical patients have preexisting anti–type 
I IFN autoantibodies (30, 31), we measured 
anti–IFN-α2 and anti–IFN-ω neutralizing 
autoantibodies in patients and controls. 
Autoantibodies against type I IFNs were 
identified in two critical patients (fig. S3C) but 
none of the non-critical patients or the healthy 
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controls. In these two patients, the presence of 
autoantibodies was associated with an absence 
of SARS-CoV-2 neutralizing antibody titers 
(fig. S3D). 
 
Quantitative Plasma and PBMC Proteomics 
Highlight Signatures of Acute Inflammation, 
Myeloid Activation, and Dysregulated Blood 
Coagulation

Quantitative nanoscale liquid chromatography 
coupled to tandem mass spectrometry 
(nanoLC-MS/MS) analysis of whole 
unfractionated plasma samples identified a 
total of 336 proteins. Differential analysis was 
performed on an average of 178 ± 7, 189 ± 11, 
and 195 ± 8 proteins in healthy individuals, non-
critical patients, and critical patients, respectively 
(Fig. 3A). These experiments were conducted 
on crude liquid digested plasma samples without 
any fractionation or depletion of high abundant 
proteins to favor repeatability and robustness 
of quantification and differential analysis, at 
the cost of a lower proteome coverage. After 
validating the homogeneous distribution of 
the three groups using a multidimensional 
scaling plot, we performed a differential protein 
expression analysis to identify protein signatures 
that were specific to critical patients (Fig. 3, B 
and C). In line with previous studies (8, 32), 
the antimicrobial calprotectin (heterodimer 
of S100A8 and S100A9) was among the top 
differentially expressed proteins in critical 
versus non-critical patients, which confirms 
that calprotectin is a robust marker for disease 
severity (Fig. 3D). Our data also showed 
dysregulation of multiple apolipoproteins 
including APOA1, APOA2, APOA4, APOM, 
APOD, APOC1, and APOL1 (Fig. 3, C and 
E). Most of these proteins were associated 
with macrophage functions and were down-
regulated in critical patients. Acute-phase 
proteins (CRP, CPN1, CPN2, C6, CFB, ORM1, 
ORM2, SERPINA3, and SAA1) were strongly 
up-regulated in critical patients (Fig. 3, C and 
E). These findings are consistent with previous 
studies showing that acute inflammation and 
excessive immune cell infiltration are associated 
with disease severity (26, 33, 34).

Whole-cell lysates of PBMCs from the same 
groups of patients and controls were also 
subjected to quantitative nanoLC-MS/MS 
analysis, which led to the identification and 
quantification of a total of 2196 proteins. 
Differential analysis was performed on 
an average of 801 ± 213, 1050 ± 309, and 
1052 ± 286 proteins in healthy individuals, non-
critical patients, and critical patients, respectively 
(Fig. 3F). Although the human proteome 
coverage was relatively low after exclusion of 
contaminating fetal calf serum (FCS) peptides 
and the distribution of the three groups in the 
multidimensional scaling plot was less clear than 
that found for plasma proteins, the differential 
expression analysis between non-critical and 
critical patients showed dysregulation of blood 
coagulation and myeloid cell differentiation 
(Fig. 3, G to I). The latter observation involving 
the Carbonic anhydrase 2 (CA2), Alpha-
hemoglobin-stabilizing protein (AHSP), Solute 
carrier family 4 member 1 (SLC4A1), Transferrin 
receptor protein 1 (TFRC), Dematin Actin 
Binding Protein (DMTN), Fatty acid synthase 
(FAS), and Myeloblastin (PRTN3) proteins 
was in line with the plasma proteomics results 
evidencing dysregulation of macrophages 
and with other reports showing that severe 
COVID-19 is marked by a dysregulated 
myeloid cell compartment (15). The profile of 
the blood coagulation proteins Hemoglobin 
subunit beta (HBB), Hemoglobin subunit delta 
(HBD), Hemoglobin subunit epsilon (HBE1), 
SLC4A1, Peroxiredoxin-2 (PRDX2), Sorcin 
(SRI), ADP-ribosylation factor 4 (ARF4), 
Mesencephalic astrocyte-derived neurotrophic 
factor (MANF), Integrin alpha-2 (ITGA2), 
Orosomucoid 1 (ORM1), and Serpin family A 
member 1 (SERPINA1) confirmed that severity 
is also associated with coagulation-associated 
complications that can involve either bleeding or 
thrombosis (35).

Combined Transcriptomics and Proteomics 
Analysis Supports Inflammatory Pathways 
Associated with Critical Disease 
 
Consistent with the proteomics data, differential 
gene expression (DGE) and gene set enrichment 



 35 TELICOM 35, No. 2 — Second Quarter 2023

analysis of RNA-seq data from whole blood 
samples collected from the patients showed that 
regulation of the inflammatory response, myeloid 
cell activation, and neutrophil degranulation were 
the main enriched pathways in critical patients 
with normalized enrichment scores of 2.33, 
2.65, and 2.66, respectively (Fig. 4, A and B). To 
identify enriched pathways that were supported 
by different omics layers, we performed nested 
GOSeq (nGOseq) (36) functional enrichment 
of the differentially expressed genes or proteins 
identified from the RNA-seq, plasma, and PBMC 
proteomics data (Fig. 4C). In line with the 
cytokine profiling results (Fig. 2A), inflammatory 
signaling and the response to proinflammatory 
cytokine release (IL-1, IL-8, and IL-12) were 
supported by multiple omics datasets. As 
suggested by the results from immune cell 
profiling (Fig. 2, C and D) and previous studies, 
the B cell response was activated, whereas 
the T cell response was impaired (17, 37). As 
previously observed (8, 14, 15, 38), the activation 
of neutrophils and monocytes was confirmed by 
the enrichment of nine different nGOseq terms 
(Fig. 4C). The nGOseq enrichment analysis also 
indicated that dysfunction of blood coagulation 
involves a fibrinolytic response; however, 
this observation could also be linked to the 
anticoagulant therapy administered to most 
critical patients. Moreover, nGOseq terms related 
to viral entry and even viral transcription were 
strongly enriched for patients with critical disease 
across the three omics datasets. This result was 
consistent with the identification of viral gene 
transcripts in the RNA-seq data of eight critical 
patients but not in those from non-critical patients 
(table S2).

Integrated AI, ML, and Probabilistic 
Programming Reveals a Robust Gene 
Expression Signature and Identifies Driver 
Genes That Differentiate Critical from 
Non-Critical Patients 
 
To robustly identify a set of genes that might 
differentiate between non-critical and critical 
patients with COVID-19 and could thus 
be related to the progression to ARDS, we 

partitioned the 69 patient blood RNA-seq 
data (46 critical and 23 non-critical patients) 
100 times to account for sampling variation, 
using 80% for training and 20% for testing, and 
evaluated the performance of seven distinct 
AI and ML algorithms, including a quantum 
support vector machine (qSVM), to differentiate 
between patients with non-critical and critical 
COVID-19. We have previously shown that 
quantum annealing is a more robust classifier for 
relatively small patient training sets (39). The 
receiver operating characteristic curves (ROCs) 
for the 100 partitions of the patient data as well 
as other classification performance metrics are 
shown in Fig. 5A and table S3. The classification 
performance on the test set provided a high 
degree of confidence that the signals learned 
by the various AI and ML algorithms are 
generalizable. 
 
After successfully classifying non-critical versus 
critical patients based on whole-transcriptome 
RNA-seq profiling, we assessed feature scores 
across the six distinct ML algorithms and all 
partitions to determine an ensemble feature 
ranking, ignoring features from the partitions 
of patient data where the test area under the 
receiver operating characteristic (AUROC) was 
less than 0.7. Aggregating the best-performing 
features across both the algorithm and data 
partitions afforded a more robust and stable set of 
generalizable features. 
 
This signature represented hundreds of genes 
that are differentially expressed and, by itself, 
did not distinguish between driver genes of 
critical COVID-19 and genes that react to the 
disease. Therefore, we then selected the top 
600 most informative genes and used them as 
input for structural causal modeling (SCM) to 
identify likely drivers of critical COVID-19. We 
confirmed that these 600 genes are biologically 
relevant for distinguishing between critical and 
non-critical patients by retraining an ensemble 
ML classifier using only those 600 genes (table 
S4). Previous work has shown that SCM of 
RNA-seq data produces causal dependency 
structures, which are indicative of the signal 
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Fig. 3. Plasma and PBMC proteomics distinguish healthy individuals, non-critical patients with 
COVID-19, and critical patients with COVID-19. 

(A) The total number of proteins identified and used for quantification and differential analysis in 
the plasma of patients and healthy controls is shown. Each dot represents a patient. Bars represent 
means ± SD.  
 
(B) A multidimensional scaling plot of the normalized intensities of all individuals in the three 
groups is shown.  
 
(C) A volcano plot representing the differentially expressed proteins (DEPs) in critical versus 
non-critical patients is shown. The orange dots represent the proteins that are differentially 
expressed with a corrected P < 0.05. Proteins labeled in green and purple represent down-regulated 
apolipoproteins and up-regulated acute-phase proteins, respectively.  
 
(D) Normalized intensities of the proteins S100A8 and S100A9 in the three groups are shown. 
Data are shown as box-and-whisker plots with medians, 25th to 75th percentiles, and maximal and 
minimal values and include n = 45 critical patients, n = 23 non-critical patients, and n = 22 healthy 
controls. P values were determined with the Kruskal-Wallis test, followed by Dunn’s posttest for 
multiple group comparisons; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.  
 
(E) The heatmap shows the expression of apolipoproteins involved in macrophage functions 
and acute-phase proteins in the three groups. Up-regulated proteins are shown in red, and down-
regulated proteins are shown in light blue.  
 
(F) The total number of proteins identified and used for quantification and differential analysis in 
PBMCs of patients and healthy controls is shown. Each dot represents a patient. Bars represent 
means ± SD.  
 
(G) A multidimensional scaling plot of the normalized intensities of all patients/individuals in the 
three groups is shown.  
 
(H) A volcano plot representing the DEPs in critical versus non-critical patients is shown. The 
orange dots represent the proteins that are differentially expressed with a corrected P < 0.05. 
Proteins labeled in green and purple are up-regulated proteins involved in the regulation of blood 
coagulation and myeloid cell differentiation, respectively.  
 
(I) The heatmap shows the expression of proteins involved in the regulation of blood coagulation 
and myeloid cell differentiation in the three groups. Up-regulated proteins are shown in red, and 
down-regulated proteins are shown in light blue.
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Figure 4 (details on next page) 
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transduction cascades that occur within cells 
and drive phenotypic and pathophenotypic 
development (40). However, this approach works 
best if the gene sets are stable and consistent 
across six different algorithms, as shown here. 
The resultant SCM output is presented as a 
directed acyclic graph (DAG) (Fig. 5B), a gene 
network representing the putative flow of causal 
information, with genes on the left predicted to 
have the greatest degree of influence on the entire 
state of the network. Perturbing these genes is 
the most likely to be disruptive to the state of 
the network (fig. S4) and is expected to exert the 
greatest effect on the expression of downstream 
genes. The top five genes associated with the 
greatest degree of putative causal dependency 
were ADAM9, RAB10, MCEMP1, MS4A4A, 
and GCLM, and all five of these genes were 
significantly up-regulated in critical patients 
with false discovery rates (FDRs) of 1.6 × 10−11, 
3.1 × 10−12, 1.6 × 10−11, 1.0 × 10−9, and 5.3 × 
10−13, respectively (Fig. 5C). 
 
To further assess the informativeness of this 
COVID-19 gene expression signature, we used 
a second independent patient cohort consisting 
of critical patients with COVID-19 sampled at 
the time of entry into the ICU and recovered 
critical patients sampled at 3 months after 
discharge from the ICU. Patients in this second 
cohort were from a more typical COVID-19 
ICU population, as no exclusion criteria based 
on age or absence of comorbidities were applied 

(table S1). Although non-critical patients with 
COVID-19 cannot be assumed to be the same 
as recovered critical patients with COVID-19 
and, thus, the ML models from the first patient 
cohort cannot be directly applied to the second, 
the second patient cohort was used to provide 
additional evidence of the overall importance of 
the gene expression signature related to critical 
forms of COVID-19. The driver genes followed 
the same trend in the second patient cohort, 
namely, that all five of these genes showed 
increased expression in the critical COVID-19 
patient groups (fig. S5A). Moreover, an ensemble 
of ML classifiers trained on the second cohort 
using the 600 genes identified in the first group 
of patients was well able to differentiate between 
critical and recovered patients (fig. S5, B and 
C); classification performance when training 
on the differentially expressed genes between 
critical and recovered patients was nearly the 
same as the first patient cohort (table S5), which 
further suggests a substantial degree of biological 
relevance of this gene signature.
 
ADAM9 Is a Driver of ARDS in Critical 
Patients with COVID-19 
 
Among the five driver genes identified by 
SCM, we primarily focused on experimentally 
determining the role of ADAM9 (a disintegrin 
and a metalloprotease 9) in COVID-19 etiology 
because (i) it was the gene with the greatest 
degree of causal influence in the SCM DAG, 

Fig. 4. RNA-seq and combined omics analysis reveal critical patient–specific pathways. 

(A) A volcano plot representing the differentially expressed genes in critical versus non-critical 
patients is shown. The orange dots represent the genes that are differentially expressed with a 
corrected P < 0.05. Proteins labeled in green and purple represent up-regulated genes involved in 
blood pressure regulation and viral entry, respectively.  
 
(B) Gene set enrichment analysis plots show positive enrichment of inflammatory response, 
myeloid leukocyte activation, and neutrophil degranulation pathways in samples from patients with 
critical COVID-19. NES, normalized enrichment score. 
 
(C) Enriched nested gene ontology (nGO) categories are shown for critical versus non-critical 
patients using RNA-seq, plasma proteomics, and PBMC proteomics data.
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Fig. 5. Integrated AI, ML, and probabilistic programming distinguishes non-critical and critical 
patients with COVID-19. 

(A) ROCs of the train and test sets for critical versus non-critical comparisons are shown for each 
of the seven modeling methods. All methods performed similarly. Other classification metrics are 
provided in table S3.  
 
(B) A putative network shows the flow of causal information based on the top 600 most 
informative genes for classifying RNA-seq data of critical versus non-critical patients.  
 
(C) Box plots show the normalized gene counts of the five driver genes identified that distinguish 
critical and non-critical patients. The indicated values correspond to the FDR. Data are shown as 
box-and-whisker plots with medians, 25th to 75th percentiles, and maximal and minimal values 
and include n = 46 critical and n = 23 non-critical patients.

(ii) it was the only driver gene that was 
previously shown to interact with SARS-CoV-2 
through a global interactomics approach (41, 
42), and (iii) it is an entry factor for another 
RNA virus, the encephalomyocarditis virus 
(43). ADAM9 is a metalloprotease with 
various functions that are mediated either by 
its disintegrin domain for adhesion or by its 
metalloprotease domain for the shedding of 
a large range of cell surface proteins (44). 
The ADAM9 gene encodes two isoforms that 
are translated into either membrane-bound or 
secreted protein. Although neither isoform could 
be detected using our proteomics approach, 
ADAM9 was up-regulated at the RNA level, 
and the secreted form was found at a higher 
concentration in the serum of critical versus 
non-critical patients (Fig. 6, A and B). The 
transcriptional up-regulation of ADAM9 was 
also found to be associated with disease severity 
in a previously published bulk RNA-seq 
dataset (fig. S6) (45). To assess the potential 
for increased metalloprotease activity in the 
critical cohort, we quantified the soluble form 
of the MICA protein (46), which is known 
to be cleaved by ADAM9 (47) by enzyme-
linked immunosorbent assay (ELISA). The 
concentration of soluble MICA (sMICA) was 
indeed significantly higher in the plasma of 
critical patients as compared to non-critical 
patients (P = 0.016) and healthy controls 
(P = 0.0001; Fig. 6C). A global expression 

quantitative trait loci (eQTL) analysis using 
WGS and RNA-seq data identified eight single-
nucleotide polymorphisms (SNPs) associated 
with three of the top five putative driver genes 
with genome-wide significance (P < 0.0001 
for all SNPs; table S6). Among these SNPs, 
rs7840270 is localized just 0.3 kb upstream 
of the ADAM9 gene and an eQTL for blood 
expression was reported in the Genotype-Tissue 
Expression database (GTEx). In the present 
cohort, including all three groups together, the 
C allele was associated with a higher abundance 
of ADAM9 transcripts (Fig. 6D), as it is in the 
GTEx dataset. The higher expressing allele C 
was indeed more frequent in critical than in 
non-critical patients [71.3% versus 50%; Odds 
Ratio (OR) = 2.48; 95% confidence interval 
(CI): 1.14 to 5.36; P = 0.017]. This was not due 
to any difference in ethnicities between critical 
and non-critical groups (fig. S7) (48). ADAM9 
RNA expression was significantly higher in 
the CC compared to CA (P = 0.049) and AA 
(P = 0.0046) genotypes only in the critical group, 
suggesting that the CC genotype may contribute 
to higher ADAM9 RNA expression in critical 
patients (fig. S8). 

To assess the role of ADAM9 in viral infection, 
we set up an ex vivo assay in which ADAM9 
was silenced by small interfering RNA (siRNA) 
in Vero 76 or A549-Angiotensin-Converting 
Enzyme 2 (ACE2) (49) cells and subsequently 
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infected the cells with SARS-CoV-2. Viral 
replication was monitored by flow cytometry 
quantification of the intracellular nucleocapsid 
protein and by quantitative viral real-time 
polymerase chain reaction (qRT-PCR) of the 
culture supernatant (Fig. 6E). The average 
silencing efficiency reached 66% in Vero 76 
cells and 93% in A549-ACE2 cells (fig. S9). In 
both cell lines, the amount of intracellular virus 
and the quantity of released virus were lower 
when ADAM9 was silenced as compared to the 
control condition that was treated with a control 
siRNA (Fig. 6, F and G). Our results collectively 
demonstrate that ADAM9 is an in vivo up-
regulated driver in critical patients. We also show 
a higher global proteolytic activity in serum 
samples of critical patients and demonstrate that 
a higher amount of ADAM9 facilitates viral 
infection and replication in an ex vivo cellular 
model. 
 
DISCUSSION 
 
A number of studies have detailed the molecular 
and cellular modifications associated with 
COVID-19 disease severity (8, 11, 12, 15, 16, 34, 
45, 50–54), yet very few studies have targeted 
a young population with no comorbidities to 
reduce confounders that may also drive severity 
and mortality, and these confounders were 
limited to epidemiology or standard clinical 
parameters such as CRP, D-dimers, or Sequential 
Organ Failure Assessment (SOFA) scores 
(55–57). A comprehensive understanding of the 
immune responses to SARS-CoV-2 infection 
is fundamental to develop an explanation as to 
why some young patients without comorbidities 
progress to critical illness whereas others do 
not, a phenomenon that has been exacerbated 
with new viral variants in current epidemic 
waves across the globe (58, 59). In particular, 
knowledge of the molecular drivers of critical 
COVID-19 is urgently needed to identify 
predictive biomarkers and more efficient 
therapeutic targets that function through drivers 
of critical COVID-19 rather than to downstream 
or secondary events (60–62). 

Here, we used a multi-omics strategy associated 
with integrated AI, ML, and probabilistic 
programming methods to identify pathways and 
signatures that can differentiate critical from 
non-critical patients in a population of patients 
younger than 50 years without comorbidities. 
This in silico strategy provided a detailed 
view of the systemic immune response that 
was globally in accordance with previously 
published data. The thrust of our work, however, 
was to define a consistent transcriptomic 
signature that can robustly differentiate critical 
from non-critical patients, as shown by the 
classification performance metrics assessed in 
this study. Moreover, one can infer the biological 
relevance of the COVID-19 gene expression 
signature found in patient cohort 1 as the same 
classification performance was achieved in the 
second, independent patient cohort composed of 
81 critically ill and 73 recovered critical patients. 

Using the top 600 gene expression features 
of the signature as the input for SCM, we 
derived a causal network that uncovered five 
putative driver genes: RAB10, MCEMP1, 
MS4A4A, GCLM, and ADAM9. RAB10 
(Ras-related protein Rab-10) is a small guanosine 
triphosphatase that regulates macropinocytosis 
in phagocytes (63), which is a mechanism that 
has been suggested to be involved in the entry 
of SARS-CoV-2 into respiratory epithelial cells 
(64). MCEMP1 (mast cell expressed membrane 
protein 1) is a membrane protein specifically 
associated with lung mast cells, and decreasing 
the expression of this protein has been shown 
to reduce inflammation in septic mice (65, 66). 
MS4A4A (a member of the membrane-spanning, 
four domain family, subfamily A) is a surface 
marker for M2 macrophages that mediates 
immune responses in pathogen clearance (67) 
and regulates arginase 1 induction during 
macrophage polarization and lung inflammation 
in mice (68). GCLM (glutamate-cysteine ligase 
modifier subunit) is the first rate-limiting enzyme 
of glutathione synthesis and has been linked 
to severe COVID-19 (68). Although these four 
genes are all good candidates that can at least 
partially explain the severity of the disease, we 
focused our functional validations on ADAM9, 
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which represented, from an in silico standpoint, 
the most promising driver gene. The confirmed 
up-regulation of ADAM9 at the RNA and protein 
levels in critical patients, which might partly 
be linked to prestored ADAM9 release by 
neutrophils (69), the increased metalloprotease 
activity in these same patients, and our ex 
vivo validation of its effect on viral uptake and 
replication are strong arguments supporting the 
targeting of this protein as a potential therapeutic 
strategy for the treatment or prevention of critical 
COVID-19. In vitro, we found that ADAM9 
markedly affects viral uptake or replication. 
The inhibition of this presumed mechanism of 
action of ADAM9 might represent a target for 
the treatment of SARS-CoV-2 or other viral 
infections. Moreover, therapies that block viral 
uptake rather than host receptor binding are 
more likely to be variant independent, a known 
virological behavior that might, at least partially, 
compromise current vaccination efforts (70).

Because of its implication in tumor progression 
and metastasis, ADAM9 is currently being tested 
as a target of antibody-drug conjugate therapy for 
solid tumors (71). A repurposing strategy using 
ADAM9-blocking antibodies for the treatment of 
critical patients with COVID-19 could therefore 
be envisioned. Alternatively, other therapeutic 
agents to reduce the ADAM9 concentration or 
activity could be pursued.

Our study has several limitations. On the basis 
of the present experimental results, we cannot 
conclude yet as to the molecular mechanism 
linking ADAM9 and viral uptake or replication. 
The predictive performance of ADAM9 as a 
diagnostic marker for disease severity and as a 
therapeutic target has to be evaluated in further 
studies. In addition, because of the differences 
in the first and second patient cohorts, we were 
unable to fully assess the generalizability of the 
RNA-seq gene signature found in the first patient 
cohort to the second patient cohort. Last, we 
did not test the silencing of ADAM9 on various 
SARS-CoV-2 variants.

In conclusion, this study presents a detailed 
multi-omics investigation of a well-characterized 

cohort of young, previously healthy, critical 
COVID-19 patient series compared with 
non-critical patients and healthy controls. 
In addition to uncovering a landscape of 
molecular changes in the blood of critical 
patients, we applied a data-driven ensemble 
AI/ML strategy, which was independent of 
prior biological knowledge and thus minimized 
possible annotation biases, to gain insights into 
COVID-19 pathogenesis and to provide potential 
candidate diagnostic, prognostic, and especially 
much needed therapeutic targets that might be 
helpful in combating the COVID-19 pandemic. 
 
MATERIALS AND METHODS 
 
Study Design 
 
In March and April 2020, patients aged less than 
50 years who had no comorbidities (of note, 
obesity alone was not considered an exclusion 
criterion) and were admitted for COVID-19 to 
the infectious disease unit (hereafter designated 
non-critical care ward) or to the designated ICUs 
at the university hospital network in northeast 
France (Alsace) were investigated within the 
framework of the present study. Follow-up was 
performed until hospital discharge. SARS-CoV-2 
infection was confirmed in all the patients by 
qRT-PCR tests for COVID-19 nucleic acid of 
nasopharyngeal swabs (72). The ethics committee 
of Strasbourg University Hospitals approved the 
study (COVID-HUS, reference CE: 2020-34). 
Written informed consent was obtained from all 
the patients. The demographic characteristics, 
medical history, and symptoms were reported. 
Three groups were considered: (i) the “critical 
group,” which included 47 patients admitted 
to the ICU; (ii) the “non-critical group,” which 
was composed of 25 hospitalized patients at 
the non-critical care ward; and (iii) the “healthy 
control group,” which included 22 healthy 
age- and sex-matched blood donors aged less 
than 50 years. A second, independent cohort 
composed of 81 critical patients and 73 recovered 
critical patients from one of the ICU departments 
of Strasbourg University hospitals was used to 
further evaluate our molecular classification 
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Fig. 6. ADAM9 is a key driver of SARS-CoV-2 infection and replication in vitro.

(A) qRT-PCR confirmation of the differential expression of ADAM9 in non-critical (n = 19) versus 
critical patients (n = 38) and in healthy controls (n = 20) is shown.  
 
(B) Soluble ADAM9 (sADAM9) concentration in serum samples isolated from healthy controls 
(n = 15), non-critical patients (n = 22), and critical patients (n = 43) was determined by ELISA.  
 
(C) Soluble MICA (sMICA) concentration in serum samples isolated from healthy controls (n = 
11), non-critical patients (n = 22), and critical patients (n = 43) was determined by ELISA.  
 
(D) Expression of ADAM9 according to the genotype of the eQTL rs7840270 is shown (n are 
indicated below the genotypes).  
 
(E) The experimental approach for assessing viral uptake and viral replication in silenced Vero 76 
or A549-ACE2 cells is shown.  
 
(F) Flow cytometry–based intracellular nucleocapsid staining in control and ADAM9-silenced 
Vero 76 and A549-ACE2 cells was quantified. One representative experiment of N = 3 independent 
experiments with n = 3 in each group is shown.  
 
(G) Quantitative RT-PCR for SARS-CoV-2 in culture supernatant after the silencing of ADAM9 in 
Vero 76 or A549-ACE2 cells is shown. The results from probe N1 are shown. One representative 
experiment of N = 3 independent experiments with n = 3 in each group is shown.  
 
In (A) to (D), the P values were determined with the Kruskal-Wallis test followed by Dunn’s 
posttest for multiple group comparisons; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 
0.0001.  
 
In (F) and (G), the P values were determined from a two-tailed unpaired t test; *P < 0.05, **P < 
0.01, ***P < 0.001, ****P < 0.0001.  
 
In (A) to (C) and (F) and (G), bars represent means ± SD. RNAi, RNA interference.

findings. No sample size calculations, 
randomization, or blinding was performed.
 
Sampling 
 
Venipunctures were performed within the first 
hours after admission to the ICU or medical 
ward within the framework of routine diagnostic 
procedures. A subset of ICU patients (73%) were 
sampled every 4 to 8 days after hospitalization 
until discharge or death. Patient blood was 
collected into BD Vacutainer tubes with 
heparin (for plasma and PBMCs), with EDTA 
(for DNA), or without additive (for serum) 

and into PAXgene Blood RNA tubes (Becton, 
Dickinson and Company). Blood from healthy 
donors was sampled in BD Vacutainer tubes 
with heparin, with EDTA, or without additive. 
Plasma and serum fractions were collected after 
centrifugation at 900g at room temperature for 
10 min, aliquoted, and stored at −80°C until 
use. PBMCs were prepared within 24 hours by 
Ficoll density gradient centrifugation. Aliquots 
of 1 × 106 dry cell pellets were frozen at −80°C 
until use for proteomics. Aliquots of a minimum 
of 5 × 106 cells were frozen at −80°C in 90% 
FCS/10% dimethyl sulfoxide. The EDTA and 
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PAXgene tubes were stored at −80°C until use 
for DNA and RNA extraction, respectively.
 
Cytokine Profiling

The plasma samples were analyzed using the 
V-PLEX Proinflammatory Panel 1 Human Kit 
(IL-6, IL-8, IL-10, TNF-α, IL-12p70, IL-1β, IL-2, 
IL-4, and IFN-γ) and the S-PLEX Human IFN-
α2a Kit following the manufacturer’s instructions 
(Meso Scale Discovery). Undiluted plasma was 
used for the S-PLEX Human IFN-α2a Kit, and 
plasma was diluted twofold for use with the 
V-PLEX Proinflammatory Panel 1. The MSD 
plates were analyzed with an MS2400 imager 
(Meso Scale Discovery). Soluble IL-17 in 
undiluted serum was quantified by Quantikine HS 
ELISA (Human IL-17 Immunoassay) following 
the manufacturer’s instructions (R&D Systems). 
All standards and samples were measured in 
duplicate.

Immune Phenotyping by Mass Cytometry

PBMCs were thawed rapidly, washed twice 
with 10 volumes of RPMI 1640 medium 
(Thermo Fisher Scientific), and centrifuged for 
7 min at 300g at room temperature between 
each washing step. Cells were then treated 
with 250 U of deoxyribonuclease (DNase; 
Thermo Fisher Scientific) in 10 volumes of 
RPMI 1640 medium for 30 min at 37°C in 
the presence of 5% CO2. During this step, 
the viability and the number of the cells were 
determined with Trypan Blue (Thermo Fisher 
Scientific) and Türk’s solution (Merck Millipore), 
respectively. After the elimination of DNase 
by centrifugation for 7 min at 300g at room 
temperature, a total of 3 × 106 cells were used for 
immunostaining with the Maxpar Direct Immune 
Profiling Assay kit (Fluidigm), following the 
manufacturer’s instructions, except that we used 
32% paraformaldehyde (Electron Microscopy 
Sciences). A red blood cell lysis step was 
included after the immunostaining following the 
manufacturer’s instructions. The prepared cells 
were stored at −80°C until use for acquisition 
with a Helios mass cytometer system (Fluidigm). 

An average of 600,000 events were acquired 
per sample. The mass cytometry standard 
files produced with the Helios instrument 
were analyzed using Maxpar Pathsetter 
software v.2.0.45 that was modified for live/
dead parameters: The tallest peak was selected 
instead of the closest peak for the identification 
and quantification of the cell populations. The 
flow cytometry standard files from each group 
(healthy, critical, and non-critical) were then 
concatenated using CyTOF software v.7.0.8493.0 
for viSNE analysis (Cytobank Inc.). A total of 
300,000 events were used for the viSNE map that 
was generated with the following parameters: 
iterations (1000), perplexity (30), and theta (0.5). 
viSNE maps are presented as the means of all 
samples in each group.

Plasma Proteomics Analysis

Two microliters of plasma was prepared using 
the PreOmics iST Kit (PreOmics GmbH) 
according to the manufacturer’s protocol before 
nanoLC-MS/MS analysis on a nanoAcquity 
UltraPerformance LC (UPLC) device (Waters 
Corporation) coupled to a Q Exactive Plus 
mass spectrometer (Thermo Fisher Scientific), 
as detailed in the Supplementary Materials. A 
sample pool comprising equal amounts of all 
protein extracts was constituted and regularly 
injected during the course of the experiment as an 
additional quality control.

The raw data obtained from each sample 
(45 critical patients, 23 non-critical patients, 
and 22 healthy controls) were processed 
using MaxQuant (version 1.6.14). Peaks 
were assigned using the Andromeda search 
engine with trypsin/P specificity. A database 
containing all human entries was extracted 
from the UniProtKB/Swiss-Prot database 
(11 May 2020, 20,410 entries). The minimal 
peptide length required was seven amino acids, 
and a maximum of one missed cleavage was 
allowed. Methionine oxidation and acetylation 
of the proteins’ N termini were set as variable 
modifications, and acetylated and modified 
methionine-containing peptides, as well as 
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their unmodified counterparts, were excluded 
from the protein quantification step. Cysteine 
carbamidomethylation was set as a fixed 
modification. The “match between runs” option 
was enabled. The maximum FDR was set to 1% 
at the peptide and protein levels with the use 
of a decoy strategy. The normalized label-free 
quantification (LFQ) intensities were extracted 
from the ProteinGroups.txt file after the removal 
of nonhuman and keratin contaminants, as 
well as reverse and proteins only identified by 
site. This resulted in 336 quantified proteins. 
Complete datasets have been deposited in the 
ProteomeXchange Consortium database with the 
identifier PXD025265 (73).

The LFQ values from MaxQuant were used 
for differential protein expression analysis. 
For each pairwise comparison, the proteins 
expressed in at least 80% of the samples in 
either group were retained. Variance stabilization 
normalization (Vsn) was performed using the 
justvsn function from the vsn R package (74). 
Missing values were imputed using the random 
forest (RF) approach (75). This process resulted 
in 161 proteins. Differential protein expression 
analysis was performed using the limma 
Bioconductor package in R (76). Significant 
differentially expressed proteins were determined 
on the basis of an adjusted P value cutoff of 0.05 
using the Benjamini-Hochberg method.

PBMC Proteomics Analysis

PBMC pellets were prepared using the PreOmics’ 
iST Kit (PreOmics GmbH) according to the 
manufacturer’s protocol before nanoLC-MS/MS 
analysis on a nanoAcquity UPLC device (Waters 
Corporation) coupled to a Q Exactive HF-X 
mass spectrometer (Thermo Fisher Scientific, 
Waltham), as detailed in the Supplementary 
Materials.

The raw data obtained from each sample 
(34 critical patients, 21 non-critical patients, 
and 22 healthy controls) were processed 
using MaxQuant (version 1.6.14). Peaks were 
assigned using the Andromeda search engine 

with trypsin/P specificity. A combined human 
and bovine database (because of contamination 
with FCS in the samples) was extracted from 
UniProtKB/Swiss-Prot (8 September 2020, 
26,413 entries). The minimal peptide length 
required was seven amino acids, and a maximum 
of one missed cleavage was allowed. Methionine 
oxidation and acetylation of the proteins’ N 
termini were set as variable modifications, 
and acetylated and modified methionine-
containing peptides, as well as their unmodified 
counterparts, were excluded from protein 
quantification. Cysteine carbamidomethylation 
was set as a fixed modification. The “match 
between runs” option was enabled. The 
maximum FDR was set to 1% at the peptide 
and protein levels with the use of a decoy 
strategy. Only peptides unique to human entries 
were retained, and their LFQ intensities were 
summed to derive the protein intensities. This 
process resulted in 2196 quantified proteins. 
Complete datasets have been deposited in the 
ProteomeXchange Consortium database with the 
identifier PXD 025265 (73).

Summed peptide normalized LFQ (LFQ values 
from MaxQuant software) values were used for 
differential protein expression analysis. For each 
pairwise comparison, proteins expressed in at 
least 80% of the samples in either group were 
retained. Vsn was performed using the justvsn 
function from the vsn R package (74). Missing 
values were imputed using the RF approach 
(75). This resulted in 732 proteins. Differential 
protein expression analysis was performed using 
the limma Bioconductor package in R (76). 
Significant differentially expressed proteins were 
determined on the basis of an adjusted P value 
cutoff of 0.05 using the Benjamini-Hochberg 
method.

Whole-Genome Sequencing

WGS data were generated from DNA isolated 
from whole blood. NovaSeq 6000 (Illumina 
Inc.) machines were used for DNA sequencing 
to a mean 30× coverage. The raw sequencing 
reads from FASTQ files were aligned using 
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Burrows-Wheeler Aligner (77), and Genomic 
Variant Call Format files were generated using 
Sentieon version 201808.03 (78). Functional 
annotation of the variants was performed using 
Variant Effect Predictor from Ensembl (version 
101). GATK version 4 (79, 80) was used for 
the joint genotyping process and variant quality 
score recalibration (VQSR). We removed one 
duplicate sample on the basis of kinship (king 
cutoff of 0.3) and retained 24,476,739 SNPs that 
were given a “PASS” filter status by VQSR. The 
analysis of the 72 samples from the critical and 
non-critical groups identified 15,870,076 variants 
with Minor Allele Frequency (MAF) < 5%. The 
first two principal components were generated 
using plink2 on LD-pruned variants with Hardy-
Weinberg equilibrium in the controls with 
P ≥ 1 × 10−6 and MAF > 5% and were used as 
covariates to correct for population stratification.

Analysis of eQTLs

We performed local (cis-) eQTL analysis to 
test for associations between genetic variants 
and gene expression in 67 samples having both 
RNA-seq and SNP genotype data. Briefly, we 
used the MatrixEQTL R package (81) where 
we selected a linear model and a maximum 
distance for gene-SNP pairs of 1 × 106. The top 
two principal components identified from the 
genotype principal components analysis were 
used as covariates to control for population 
stratification. We selected 304,044 significant 
eQTLs with FDR ≤ 0.05.

RNA Sequencing

Whole-blood RNA was extracted from 
PAXgene tubes with the PAXgene Blood RNA 
Kit following the manufacturer’s instructions 
(QIAGEN). A total of 69 samples, including 
46 critical and 23 non-critical patients, were 
processed. The RNA quantity and quality were 
assessed using the Agilent 4200 TapeStation 
system (for the RNA Integrity Number) 
(Agilent Technologies) and RiboGreen (for 
the concentration) (Thermo Fisher Scientific). 
RNA-seq libraries were generated using the 

TruSeq Stranded Total RNA with Ribo-Zero 
Globin kit (Illumina) and sequenced on the 
Illumina NovaSeq 6000 instrument with S4 flow 
cells and 151–base pair paired-end reads. The 
raw sequencing data were aligned to a reference 
human genome build 38 (GRCh38) using the 
short reads aligner STAR (82). Quantification 
of gene expression was performed using 
RSEM (83) with GENCODE annotation v25 
(www.gencodegenes.org). Raw and processed 
datasets have been deposited in Gene Expression 
Omnibus (GEO) with identifier GSE172114.

DGE analysis was performed for two different 
purposes: (i) for the combined omics analysis 
of differentially expressed genes and proteins 
and (ii) as a step to determine feature selection 
for classification in the in silico computational 
intelligence approach. For the combined omics 
analysis, we first removed lowly expressed genes 
for the 69 samples by removing genes with less 
than 1 count per million in less than 10% of the 
samples. We then performed DGE analysis on all 
69 samples using the trimmed mean of M values 
method (TMM) from the edgeR R package (84, 
85).

In our computational intelligence approach, we 
performed DGE analysis for each partition of 
the train data using a frozen TMM normalization 
to calculate normalization factors based only on 
the training data to avoid data leakage. Briefly, 
we removed lowly expressed genes for the 
69 samples with genes with 1 count per million 
in less than 10% of samples. For each partition of 
the training data, we calculated the normalization 
factors and then selected the library that had a 
normalization factor closest to 1. We used this 
library as a reference library to normalize all 
the samples, keeping the training normalization 
factors unchanged. Differentially expressed 
genes were identified using quasi-likelihood 
F test–adjusted P values from the edgeR R 
package. Differentially expressed genes with 
FDRs less than 0.05 were used for further 
downstream analysis.
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Identification of Potential Driver Genes 
through SCM

To identify potential biomarkers that might 
differentiate patients in the non-critical group 
from those in the critical group, we used 
classification as a feature selection approach and 
then used the most informative features as input 
for SCM to identify potential driver genes. More 
specifically, classification was performed using 
the RNA-seq data by repeatedly partitioning 
non-critical and critical patients into 100 unique 
training and independent test sets representing 80 
and 20% of the total data, respectively, ensuring 
that the proportions of non-critical and critical 
patients were consistent in each partition of the 
data. One hundred partitions of the data were 
used to capture the biological variation and to 
obtain increased statistical confidence in the 
results. After classification, feature scores for 
each method were determined and combined 
across all 100 partitions of the data and six of the 
ML algorithms, not including the deep learning 
algorithm. To capture as much information 
as possible while still being able to finish the 
analysis in a reasonable amount of time, the 
600 most informative features were retained 
for SCM (600 features is the maximum that 
the SCM can finish in a reasonable amount of 
time). We used seven distinct ML approaches 
for our classification models: LASSO, Ridge, 
SVM, qSVM, eXtreme Gradient Boosting 
(XGB), RF, and a deep artificial neural network 
(DANN). A description of the algorithms and 
their relevant hyperparameters are mentioned in 
their respective sections in the Supplementary 
Materials. Hyperparameters were selected by 
using 10-fold cross-validation of the training 
data, and the performance was evaluated using 
the held-out test data.

Ensemble Feature Ranking

To derive an ensemble ranking of the feature 
importance, we first calculated the feature 
importances for each algorithm. LASSO, Ridge, 
SVM, and qSVM are linear models, and thus, 
the feature importance was determined on the 

basis of the value of the weight assigned to 
each feature, with a larger score corresponding 
to greater importance. RF creates a forest of 
decision trees, and as part of the fitting process, it 
determines an estimate of the feature importance 
by randomly permuting the features one at a time 
and determining the change in the accuracy. XGB 
calculates the feature importance by averaging 
the gain across all the trees, where the gain is the 
difference in the Gini purity of the parent node 
and the two children nodes.

The top 1000 most informative features of each 
model and for each partition of the data were 
retained. Because there were 100 partitions of the 
data and six algorithms (LASSO, Ridge, SVM, 
qSVM, RF, and XGB; DANN was not included 
because it lacks a robust approach to determine 
the feature importance) and up to 1000 features 
were retained, a total of up to 600,000 possible 
features were considered for each feature set, 
although it may be lower as the features may not 
be unique such that the 1000 features for one 
partition of the data might exhibit some overlap 
with the top 1000 features for another partition 
of the data. We discarded the feature scores from 
an algorithm on any partition with a test AUROC 
<0.7 in an attempt to exclude scores that might 
not truly be informative. To aggregate the scores, 
we scaled the scores by the most informative 
feature for each algorithm on each partition such 
that the feature scores were all between 0 and 1; 
for the first partition of the data, we scaled the 
1000 most informative features from LASSO, 
then proceeded to do the same for Ridge, SVM, 
and RF, and then repeated the process for each 
partition of the data. The scores were then 
averaged across all the partitions of the data to 
obtain a feature ranking for each method. If a 
feature was determined to be important for one 
partition of the data but not for others, it was 
given a value of 0 for all partitions of the data 
in which it did not appear. To determine a final 
ensemble feature ranking, the grand mean across 
all training partitions and algorithms was taken, 
and the features were sorted by the average score.
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Structural Causal Modeling

We generated Bayesian belief networks (BBNs) 
for the top 600 most informative genes as defined 
by ensemble feature ranking described above 
on the first patient cohort (the informativeness 
of those 600 genes was evaluated in the second 
patient cohort). Six hundred genes were chosen to 
capture as much information possible while still 
allowing the algorithm to finish in a reasonable 
amount of time. A BBN is a DAG, where the 
directionality of the arcs represents conditional 
dependencies between the nodes. Training of 
BBNs was performed in R using the bnlearn 
package (86). See the Supplementary Materials 
for more details.

Real-Time Reverse Transcription Quantitative 
PCR

Total RNA was extracted from cells using 
the RNeasy Mini Kit (QIAGEN), and the 
RNA quality was assessed using an Agilent 
2100 Bioanalyzer before reverse transcription 
into cDNA with Maxima H Minus Master 
Mix and following the manufacturer’s 
instructions (Thermo Fisher Scientific). 
RT-qPCR was performed using QuantStudio3 
(Thermo Fisher Scientific) according to the 
manufacturer’s protocol and using PowerTrack 
SYBR Green Master Mix (Thermo Fisher 
Scientific, Waltham, MA, USA). The 
following primers were used: ADAM9, forward 
5′-GGACTCAGAGGATTGCTGCATTTAG-3′ 
and reverse 
5′-CTTCGAAGTAGCTGAGTCATGCTGG-3′; 
and GAPDH (housekeeping gene), forward 
5′-GGTGAAGGTCGGAGTCAACGGA-3′ 
and reverse 
5′-GAGGGATCTCGCTCCTGGAAGA-3′ 
(Integrated DNA Technologies). The qRT-PCR 
protocol consisted of 95°C for 2 min followed 
by 40 cycles of 95°C for 5 s and 60°C for 
30 s. All reactions were performed in duplicate, 
and the relative amounts of transcripts were 
calculated with the comparative Ct method. 
Gene expression changes were calculated using 
the 2−ΔΔCt values calculated from averages of 

technical duplicates relative to the negative 
control. Melting curve analysis was performed to 
assess the specificity of the PCR products.

Enzyme-Linked Immunosorbent Assays

The concentrations of soluble ADAM9 
(sADAM9) and sMICA in the serum of critical 
and non-critical patients and healthy controls 
were quantified by ELISA. For sADAM9, we 
used a Human sADAM9 DuoSet ELISA kit 
(R&D Systems) following the manufacturer’s 
instructions. sMICA concentrations were 
measured with an in-house developed sandwich 
ELISA using two monoclonal mouse antibodies 
for capture (A13-C485B10 and A9-C255A9 at 
concentrations of 2 and 0.2 mg/ml, respectively) 
and one biotinylated monoclonal mouse antibody 
for detection (A15-C199B9 at 60 pg/ml); all three 
antibodies were made in-house and described 
by Carapito et al. (87). Coating of MaxiSorp 
ELISA plates (Thermo Fisher Scientific) was 
performed in phosphate-buffered saline (PBS) 
at 4°C overnight. After three washing steps with 
PBS, the wells were blocked with 200 μl of 
10% bovine serum albumin (BSA) in PBS for 
1 hour at room temperature. All the following 
steps were carried out at room temperature with 
PBS/0.05% Tween 20/10% BSA, which was 
used as a diluent for all the reagents and serum 
samples. The plates were washed three times 
with PBS/0.05% Tween 20 between incubation 
steps. After blocking, the plates were incubated 
with 100 μl of sera, standards, and controls for 
2 hours, followed by incubation with 100 μl of 
biotinylated detection antibody for 1 hour. The 
plates were subsequently incubated for 1 hour 
with 100 μl of a 5000-fold dilution of streptavidin 
poly–horseradish peroxidase (Thermo Fisher 
Scientific) per well. The reactions were lastly 
revealed using 3,3′,5,5′-tetramethylbenzidin Ultra 
(Thermo Fisher Scientific) at 100 μl per well 
for 15 min and stopped with 100 μl of 1 M HCl. 
The absorbance was measured at 450 nm on a 
Varioskan LUX (Thermo Fisher Scientific).
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Silencing and Cell Transfection

Vero 76 cell lines (Vero C1008; catalog no. 
CRL-1586, Clone E6) were grown at 37°C under 
5% CO2 and maintained in Dulbecco’s modified 
Eagle’s medium (DMEM; Thermo Fisher 
Scientific) containing penicillin (100 U/ml) and 
supplemented with 10% FCS (Pan Biotech). 
ACE2-expressing A549 cells (A549-ACE2; a 
gift from O. Schwartz, Institut Pasteur) were 
grown at 37°C under 5% CO2 and maintained in 
DMEM (Thermo Fisher Scientific) containing 
blasticidin S (10 μg/ml; Invitrogen). The cells 
were transfected with predesigned Stealth 
siRNA directed against ADAM9 (HSS112867) 
or the control Stealth RNAi Negative Control 
Duplex medium GC (45 to 55%) (Thermo Fisher 
Scientific) using Lipofectamine RNAiMAX 
Transfection Reagent (Thermo Fisher Scientific). 
One day before transfection, the cells were 
seeded in a 24-well plate at 0.05 × 106 cells per 
well. First, 1.5 μl of Lipofectamine RNAiMAX 
Transfection Reagent was added to 25 μl of 
Opti-MEM medium, followed by the addition of 
the mix containing 5 pmol of siRNA in 25 μl of 
Opti-MEM medium (Thermo Fisher Scientific). 
The mixture was incubated at room temperature 
for 5 min and then added to the cells. The cells 
were collected or infected after 48 hours.

In Vitro Viral Infections

Vero 76 and A549-ACE2 cell lines were 
infected with wild-type SARS-CoV-2 virus 
at multiplicities of infections of 10 and 400, 
respectively. The percentage of infected cells 
was determined by staining with SARS-CoV-2 
nucleocapsid (percentage of nucleocapsid 
positive cells), and virus released into the 
supernatant was analyzed by RT-PCR (copies/
ml) after 2 and 3 days of infection for Vero 76 
and A549-ACE2 cells, respectively. The cells 
were fixed for 20 min in 3.6% paraformaldehyde 
at 4°C, washed in 5% FCS in PBS, and stained 
with anti-nucleocapsid antibody (GTX135357, 
GeneTex) at a 1:200 dilution in Perm/Wash 
(Becton, Dickinson and Company) for 45 min at 
room temperature. Samples were then incubated 

with Alexa Fluor 647–labeled goat anti-rabbit 
monoclonal antibody (Ab150083, Abcam, 
Cambridge, UK) diluted 1:200 in 5% FCS in PBS 
for 45 min at room temperature. Samples were 
acquired with a MACSQuant flow cytometer 
(Miltenyi Biotec) and analyzed with the Kaluza 
software (Beckman Coulter).

RNA was extracted from the supernatant of 
infected cells using the NucleoSpin Dx Virus Kit 
(Macherey-Nagel GmbH & Co.KG). RT-qPCR 
was performed using TaqPath 1-Step RT-qPCR 
Master Mix (CG) on the Quanstudio3 instrument 
(Thermo Fisher Scientific). The primer/probe 
mix used for absolute quantification of the virus 
was N1 and N2 from the 2019-nCoV RUO Kit 
(Integrated DNA Technologies), and the positive 
control for the standard curve was 2019-nCoV N 
Positive Control (Integrated DNA Technologies). 
The reaction was performed in 20 μl, which 
included 5 μl of eluted RNA, 5 μl of TaqPath 
Master Mix, and 1.5 μl of the primer/probe. 
The qRT-PCR protocol consisted of 25°C for 
2 min, 50°C for 15 min, and 95°C for 2 min 
and 40 cycles of 95°C for 3 s and 60°C for 30 s. 
All reactions were performed in duplicate, and 
absolute quantification was calculated with the 
standard curve of the positive control.

Statistical Analysis

Statistical analysis was performed with GraphPad 
Prism (GraphPad Software) unless stated 
otherwise. A P value below 0.05 was considered 
significant. For two group comparisons, data 
were analyzed by unpaired, two-sided Mann-
Whitney or Student’s t test. For three or more 
group comparisons, data were analyzed by 
unpaired, two-sided Kruskal-Wallis test, followed 
by Dunn’s posttest (*P < 0.05, **P < 0.01, 
***P < 0.001, and ****P < 0.0001). In figures 
and tables, “n” represents the number of 
biological replicates and “N” denotes the number 
of times an experiment was independently 
performed.  Ω


