
70                                                              TELICOM 33, No. 3 — Third Quarter 2021

1. Introduction

In mathematics, the Greek letter π, spelled pi, 
is associated with the numerical value of the 
ratio of the area of a circle to the square of the 
circle’s radius as well as the ratio of a circle’s 
circumference to its diameter.1 Archimedes used 
a mathematical technique called the method 
of exhaustion to determine lower- and upper-
bound values for pi that were the most accurate 
approximations of pi of any calculated before the 
Common Era.2 

The method of exhaustion is typically used to 
estimate “the area of a shape by inscribing inside 
it [or surrounding it with] a sequence of polygons 
whose [combined] areas converge to the area 
of the containing [or surrounded] shape [as the 
number of polygons in the sequence increases].”3 
Recently, ISPE member Gary S. Flom presented 
a technique for approximating pi along with 
the question of whether anyone in ISPE had 
previously seen the method.4 The purpose of this 
paper is to first explain the method of exhaustion 
and Archimedes’ approach to approximating pi, 
then to answer Flom’s question in the affirmative 
by situating his technique as an application of 
the method of exhaustion, and finally to briefly 
discuss limitations to and alternative methods for 
approximating pi.  

2. Approximating Pi with the Method of 
Exhaustion  

If a circle has a radius of 1 unit, then it is a unit 
circle with an area of π square units, because pi 
is the ratio of the area of a circle to the square 
of the circle’s radius (which is 1). Therefore, 
approximating pi is the same as approximating 
the area of a unit circle. 

As applied to approximating the area of a circle, 
and hence approximating pi, Figure 1 depicts the 
main idea of the method of exhaustion. In the 
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left-hand diagram of Figure 1, the area within 
the black circle is approximated by the areas of 
the blue and purple hexagons. The area within 
the blue hexagon is a lower bound for the area 
within the black circle, because it has less area by 
six instances of the region labeled A. The upper 
bound for the area within the circle is given by 
the area of the circumscribing purple hexagon 
whose area is greater than the area within the 
black circle by six instances of the region labeled 
B. The area of the blue hexagon can be calculated 
by summing the areas of the triangles (3-sided 
polygons) labeled 1 through 6. Similarly, in the 
right-hand diagram of Figure 1, the area of the 
green octagon inscribed within the black circle 
can be calculated by summing the areas of the 
triangles labeled 1 through 8. 

The key to understanding the method of 
exhaustion comes from comparing the left-hand 
diagram with the right-hand diagram. As the 
number of sides of the polygon inscribed within 
the black circle increases from 6 to 8, the number 
of regions within the area labeled A increases 
from 6 to 8, but the size of each individual region 
(each triangle) within the area labeled A is much 
smaller in the right-hand diagram than in the left-
hand diagram. The net effect is that the octagon’s 
area is a closer approximation of the circle’s 
area—and of pi—than the hexagon’s area. More 
generally, continued increases in the number 
of sides of the polygon inscribed within the 
black circle correspond with increasingly close 
approximations of the circle’s area.    
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To verify that this is true, we must look further 
into the formula for calculating the area of 
polygons inscribed within a unit circle, such 
as the inscribed hexagon and octagon in 
Figure 1. According to the “Side-Angle-Side” 
trigonometric formula, the area of a triangle that 
has two sides of lengths a and b that form angle 
θ is a • b • sin(θ) / 2.6 In both cases, the two 
triangle sides that join to form angle θ have a 
length of 1 because the black circle’s radius is 1, 
so each triangle area is just sin(θ) / 2. In the left-
hand diagram, the angle θ is 60° (which is 360° 
divided by six sides of a hexagon), and  
sin(60°) / 2 is about 0.433.  
 
There are six such triangles in the hexagon, so its 
total area is 0.433 • 6 = 2.598. This is not a great 
estimate for pi, because the areas of the regions 
labeled A are still quite large. In the right-hand 
diagram, θ is 360° / 8 = 45°, so the area of the 
octagon is 8 • sin(45°) / 2 = 2.828. This is still not 
a great estimate, but the estimation clearly moved 
in the proper direction as the number of sides 
of the inscribed polygon increased from 6 to 8. 

More importantly, based on these calculations 
for the inscribed hexagon and octagon, it is easy 
to generalize to the following area formula for 
n-sided inscribed regular polygons: 

[1]	 n • sin(360°/n) / 2

Now we can use Formula [1] above with larger 
values of n to see lower-bound approximations 
of pi that are closer to the actual value. For n = 
96, Formula [1] yields a result of 3.1394, and 
evaluating Formula [1] for n = 192 yields 3.1410. 
These values show that the method of exhaustion 
works because as the value of n increases, the 
results approach the actual value of pi, which is 
just a little more than 3.14159. However, these 
two particular values of n were selected because 
they most clearly illustrate that Formula [1] is not 
exactly what Archimedes used.

3. Archimedes’ Approximations of Pi

In the third century BCE, Archimedes produced 
lower- and upper-bound estimates on the value 

Figure 1. The method of exhaustion can be used to approximate lower- and upper-bound values for 
the area of a circle. As the numbers of sides of the polygons increase, the lower- and upper-bound 
approximations become closer to the actual area of the circle. This figure is an edited version of a 
public-domain file.5
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of pi that were approximately 3.1408 and 3.1429, 
respectively.7 His analyses were based on 
96-sided regular polygons, or 96-gons, inscribed 
within and circumscribing a unit circle.8 Note 
that although his lower-bound calculation is 
based on a 96-gon, his estimate is much closer 
to, but not equal to, the lower bound that we get 
from Formula [1] with n = 192, i.e., a 192-gon. 
There are two reasons for the discrepancies. The 
first reason has to do with the way Archimedes 
applied the method of exhaustion to produce 
these estimates. The second reason has to do with 
the way Archimedes had to calculate numerical 
values as he applied the method of exhaustion.

The method of exhaustion was developed two 
centuries before Archimedes and was used to 
calculate areas and volumes.9 Archimedes applied 
the method of exhaustion to compute the area 
of a circle, but he did so indirectly, by using 
inscribed and circumscribing polygons to show 
that the area of a circle is πr2, where π (pi) is 
defined to be the ratio of a circle’s circumference 
C to its diameter d (π = C/d).10 He then applied 
the method of exhaustion directly to measure the 
perimeters of the inscribed and circumscribing 
regular polygons, rather than their areas, to 
obtain lower- and upper-bound estimates of the 
circumference of a unit circle, half of which is, 
then, an estimate of pi (π = C/d = C/2r = C/2). 

Figure 2 depicts how to process each triangle 
of a regular polygon inscribed in a unit circle 
to determine the triangle’s contribution to the 
perimeter of the polygon. Each triangle T can 
be split into two right triangles by bisecting the 
angle θ. The hypotenuse of each right triangle 
has length 1, the radius of the unit circle. Since 
the sine function is defined to be “opposite over 
hypotenuse,”11 each right triangle’s contribution 
to the polygon’s perimeter is sin(θ/2), so the 
triangle T contributes 2 • sin(θ/2) to the perimeter 
of the inscribed regular polygon. Recall that the 
value of θ in an n-gon is 360°/n, so triangle T 
contributes 2 • sin(180°/n). We then multiply by 
n for the n triangles in an inscribed regular n-gon, 
and then divide by 2 to convert the calculation of 
the perimeter of the n-gon into the lower-bound 
estimate of pi in Formula [2]: 

[2]	 n • sin(180°/n)

Using Formula [2] with a 96-gon, we get the 
same result as we got for Formula [1] with a  
192-gon. More to the point, evaluating 
Formula [2] with n=96 gives the result of 3.1410, 
which clears up most of the discrepancy with 
Archimedes’ lower-bound estimate for pi of 
3.1408. The small remaining discrepancy is due 
to the fact that Archimedes could not directly 
evaluate the sine function; and so, instead, he had 
 

Figure 2. Depiction of the contribution each triangle makes to the 
perimeter of the inscribed regular n-gon that contains it.
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to do a great deal of work iteratively using half-
angle trigonometric identities and using slightly 
lower estimates of certain quantities.12 
 
4. Flom’s Pi-Approximation Technique

Whereas Archimedes used the method of 
exhaustion with triangle areas in a proof relating 
a circle’s area to its circumference, and hence 
pi, Flom used the method of exhaustion with 
triangle areas to directly approximate pi.13 Flom’s 
generalized formula for n-gons is presented 
below as Formula [3]:

[3]	 n • sin(180°/n) • cos(180°/n)

Using n=192, Formula [3] produces the value 
3.1410, which is the same result as Formula [1] 
with n=192. In fact, although Formula [3] is 
longer, it can be equated with Formula [1] by 
applying the double-angle formula sin(2θ) =  
2 • sin(θ) • cos(θ).14 The key difference is that the
triangle area was computed using the  
“Side-Angle-Side” trigonometric formula in 
Formula [1], whereas Flom’s version is based on 
the well-known triangle area formula  
A = ½ • base • height,15 combined with 
trigonometric definitions of sine and cosine.16 
Figure 3 helps to illustrate the triangle area 
calculation upon which Formula [3] is based. 

In Figure 3, we can see that half of the 
triangle base is given by the same quantity 
that Archimedes used to calculate half of the 
triangle’s contribution to the perimeter of its 
containing n-gon. The line that bisects the 
triangle into two right triangles is also the side 
adjacent to the half-angle θ/2. Since cosine is 
defined to be adjacent over hypotenuse, and 
the hypotenuse is 1, the triangle height can be 
calculated using cos(θ/2). Recalling that  
θ = 360°/n, Formula [3] follows, i.e., there are 
n triangles, each with area (base / 2) • height = 
sin(180°/2) • cos(180°/n).

Comparing Formula [3] with Archimedes’ 
Formula [2], one can see that Formula [3] 
contains Formula [2] and an extra factor, namely, 
cos(180°/n). This extra factor slows Formula [3]’s 
convergence toward pi. For example, Formula [2] 
requires a polygon with only n= 
96 sides to calculate that pi must be at least 
3.1410, but Formula [3] requires n=192 to 
establish the same lower bound. As n approaches 
∞, the argument to cosine approaches 0, which 
means cos(180°/n) approaches 1, and Formula [3] 
approaches Archimedes’ Formula [2]. However, 
for practical values of n, Formula [2] would have 
been preferable to Archimedes, due to having to 
evaluate fewer trigonometric functions and due to 
its faster convergence toward the value of pi 

Figure 3. Rather than computing triangle area with the side-angle-side formula, it can 
be computed as one half of the base times the height of the triangle, where the base and 
height can be determined by evaluating the sine and cosine trigonometric functions.
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(which translates to one less iteration of half-
angle trigonometric identities to get the same 
estimate). 

5. Beyond the Polygon

The parameter n in Formulae [1, 2, 3] allows 
us to increase the accuracy of our estimate of 
pi by increasing the number of sides n of the 
inscribed regular n-gon, thereby exhausting the 
size of the region-A gaps (see Figure 1) between 
the area of the n-gon’s area and the containing 
circle’s area. However, this ability to increase 
the estimate accuracy is not that useful, given 
the current devices we would use to evaluate 
Formulae [1, 2, 3]. Whether one uses computer-
language commands, a spreadsheet, a calculator 
app, or a calculator, the current numerical 
accuracy typically available is 15 to 17 digits.17 
By experimenting with Archimedes’ Formula [2] 
on a device of one’s choosing, one can find that 
an n of around 90 million gives an estimate for 
pi that is accurate to 16 digits. Larger values of 
n won’t improve accuracy on the selected device 
because of the numerical accuracy limit, and 
smaller values of n don’t give a value for pi that 
is as accurate as the value one can get from the 
pi function on the selected device. Therefore, it 
is reasonable on typical devices to replace n with 
the value 90 million, as in Formula [4].

[4]	 90,000,000 • sin(180°/90,000,000)
 

There are computer-software libraries that enable 
computing of numerical values with much greater 
than the typical 15 to 17 digits of accuracy.18 
Although one could use larger values of n in 
Formula [2] with these libraries, one could 
instead use a newer method that can generate 
more digits of pi with less computation. For 
example, Formula [5] below, which uses radians 
rather than degrees, was developed in the early 
1700s based on infinite series rather than on 
polygon areas or perimeters, and it was used to 
calculate pi to over 3,000 digits of accuracy in 
the 1950s.19  

[5]	 16 • arctan(1/5) – 4 • arctan(1/239)

6. Conclusion

Archimedes originated the use of the method 
of exhaustion to estimate pi. His work included 
reasoning about the area of a circle based on the 
areas of polygons inscribed within the circle, and 
he directly estimated pi by taking half of the sum 
of the perimeter contributions of triangles within 
polygons inscribed within the unit circle. Flom’s 
technique applies the method of exhaustion to 
estimate pi by summing the areas of triangles 
within polygons inscribed within the unit circle. 
Although using the method of exhaustion on 
polygons dominated the efforts to estimate pi 
for over 1,000 years after Archimedes, modern 
efforts use other approaches, such as infinite 
series formulae that converge more quickly to the 
value of pi.20  
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