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1. Introduction

Why do mathematicians solve unrealistic, 
idealized problems? I suppose the cynical answer 
is, “Because they can.” However, in the case 
of truly great mathematicians such as Isaac 
Newton, perhaps we should suggest a more noble 
reason. Could it be because they have romantic 
leanings that make them want to ignore all of 
the ugly imperfections of the real world and 
focus, instead, on a make-believe universe where 
everything is absolutely perfect? If the elements 
of our solar system are not perfect spheres with 
faultless internal symmetry, let the practical 
people deal with the actual. Of greater interest 
is the elegance of an idealized solar system that 
reveals laws and regularities that stand behind all 
of the clutter and ugliness found in nature.

For whatever reasons, Isaac Newton proved 
two remarkable theorems, commonly called 
shell theorems. These theorems relate to the 
gravitational attraction experienced by a particle 
and produced by a perfectly spherical body with 
the perfect internal radial symmetry resulting 
from its perfect shell-like layers of a certain 
thickness and of a material with a certain mass 
density.

These shell theorems are usually described as 
applying to two different situations. One case 
is where the particle is inside the sphere; the 
other is where the particle is outside the sphere. 
Nicely written proofs of these theorems are given 
elsewhere and won’t be reproduced here.1 This 
essay will condense the two cases into one with 
the observation that the case of a particle being 
outside of the sphere can be treated as if the 
particle is still inside of an outer layer, one that 
has a zero-mass density and an infinite thickness.

We can then summarize the consequences of 
Newton’s two theorems with the following: 

 A particle located within a symmetrically 
layered sphere experiences a gravitational 
acceleration that is different from what you 
would expect. This different acceleration 
will be the acceleration that would be 
experienced if the mass were redistributed 
as follows: All of the mass located as 
close to the center as the particle, or closer 
to the center than the particle, has been 
concentrated at a point at the center, and all 
of the mass located farther from the center 
than the particle does not exist.   

This allows us to express the magnitude of the 
gravitation acceleration acting on the particle and 
directed toward the center as:

 a(d) = GM(d)/d 2, where:

 G is Newton’s gravitational constant,

 M(d) is the total of mass located at a  
         distance, p, from the center such that p < d, 
         and

 d is the distance of the particle from the 
         center.

Perhaps the most intriguing result of Newton’s 
theorems is that if the sphere has a hollow cavity 
at its center—that is, if there exists a positive D 
where M(d) is zero for all d such that  
0 < d < D—then a particle anywhere within the 
cavity will be weightless.

The imaginary problem that will be discussed 
in this essay is as follows: We will suppose that 
the particle is fired from some sort of particle 
gun that is located at the center of the sphere. 
The particle is fired at a velocity v0 through a 
pinhole that passes through the center and that 
extends through every layer of the sphere in both 
the direction of the muzzle and in the opposite 
direction.
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We will imagine the particle traveling through 
the pinhole, thereby increasing d as it appears 
in the equation above from its initial value of 
zero to some positive value. In doing so, it might 
pass through some mass, thereby making M(d) 
increase from zero to some positive value. When 
this happens, a(d) will become non-zero and will 
decelerate the particle.

As the particle travels along the pinhole, it 
increases d and quite likely M(d) also. This 
makes a(d) vary in a complicated way, but—
while it is still at a positive distance from the 
center—it will always be negative. This will 
reduce the particle’s velocity. We would expect 
that, in time, the velocity will be reduced to zero 
and then turned negative as the particle falls 
back down through the pinhole, thereby making 
its velocity more negative. When it reaches the 
center again, it will have the velocity of -v0, 
which is its original speed but in the opposite 
direction.

The particle will continue in that direction, 
moving through the other half of the pinhole in 
a mirror-image manner to its earlier trip. Thus it 
will, in time, reverse its direction and fall toward 
the center back through the pinhole, arriving 
at the center again with its original velocity v0, 
thus completing the first of an infinite number of 
cycles through the sphere.

There is another possibility, one that does not 
repeat the trips through the sphere endlessly. 
If the original velocity, v0, is large enough, the 
particle could reach the beginning of the outer 
layer—that is, exit from the sphere—with a 
velocity equal to or greater than the sphere’s 
escape velocity. In this case, the particle would 
continue in its original direction forever and 
never return to the sphere. This escape velocity 
case will be discussed later in this essay.

To provide a more detailed description of this 
idealized happening, we will exhibit a numerical 
procedure that produces a discrete approximation 
to the continuous mathematics we believe to 
be the mathematics used by nature in situations 

such as this. Our goal, then, will be to calculate 
quantities Mi, ai, vi, and di (at discrete points 
in time ti) that are the values of effective mass, 
acceleration, velocity, and distance from the 
center of the sphere. We will start the procedure 
with i = 0 and work through i = 1, 2, 3, … until 
we either complete a cycle or escape the sphere. 
We will be given d0 = 0, M0 = 0, D0 = 0, some 
value v0 > 0, and the following description of the 
sphere:

 L = the number of layers; and for each 
         layer, j = 1, 2, 3, …, L.

 Dj = the distance from the center of the 
sphere to the outer surface of layer j, where 
DL is some distance that is larger than we 
expect the particle to reach if it doesn’t 
escape, and μj = the mass density of the 
material in layer j, where μL is zero.

As usual, we will expect that our numerical 
approximation to the continuous problem will 
be improved upon by making the discrete 
increments in the independent variable small. 
This increases the solution effort, but if we can 
program a computer to do the calculations, we 
may not be very concerned with computational 
effort. So, let’s say we have chosen the 
independent variable to be d, the distance of 
the particle from the center of the sphere. Let’s 
also say that for numerical reasons, we would 
like the increment to be approximately Δ. It will 
be a convenience for the numerical procedure 
described below if we divide the thickness 
of each layer j into some number Nj of strata, 
each one a thickness, Δj, that is approximately 
Δ. We accomplish this by first computing an 
intermediate number Xj = (Dj - Dj-1)/Δ; and, if 
Xj is not integral, we round it up. Then we can 
compute a Δj for each layer as Δj = (Dj - Dj-1)/Xj, 
and an Nj = Nj-1 + Xj, where N0 = 0. We are given 
a number, INCNL, by which to increment NL in 
case we underestimated DL. (See the explanation 
of step A12 in Section 3 below.) We save the 
Nj and Δj for each j for use in the numerical 
procedure described in Section 3. But first, the 
sphere is illustrated.
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(Illustration by Laurie McKnight)

2. A Cross-Section of the Layered Sphere

(Not shown are layers 5 through L-2. The pinhole width has been exaggerated.)

Figure 1: A Cross-Section of the Layered Sphere
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3. The General Procedure A

With D0 = d0 = t0 = M0 = a0 = 0 and v0 = that 
given muzzle velocity, we start with i = 1 
and j = 1 and execute the following steps of 
computations and logic:

A1:  Set di = di-1 + Δj.

A2:  Set Mi = Mi-1 + 4/3πμj(di
3 - di-1

3).

A3:  Set ai = -GMi/di
2
.

A4:  Here we would like to set vi =  
        vi-1 + 1/2(ai + ai-1) Δj/[1/2(vi + vi-1)],  
        but that equation has vi

 on both of its sides.  
        Therefore, we must first solve the equation 
        (vi - vi-1)(vi + vi-1) = (ai + ai-1)Δj and then set 
        vi = [vi-1

2 
+ (ai + ai-1

)Δj]
1/2.

A5:  Set ti = ti-1 + Δj/[1/2(vi + vi-1)].

A6:  If vi < 0, go to B1; otherwise, proceed.

A7:  Increase i by one, and if i < Nj, return to step 
        A1; otherwise, proceed. 

A8:  Increase j by one, and if j < L, return to step 
        A1; otherwise, proceed.

A9:  If j > L, go to step A11; otherwise, proceed.

A10:  If vi-1 > [(2GMi-1)/(DL-1)]
1/2, stop; otherwise,  

          return to step A1.

A11:  Stop until told to proceed.

A12:  Set j = L, NL = NL + INCNL, and return to 
          step A1.

4. Explanation of Procedure A

To explain procedure A, step A1 increases the 
distance of the particle from the center by the 
amount we have selected as the increment while 
in layer j. Step A2 increases the amount of mass 
that will have an effect on the particle by the 
mass density of layer j times the difference in 
volumes of a sphere of radius di and a sphere of 
radius di-1. (When j = L, there is no increase in the 
effective mass because μL is zero.) Step 
 

A3 calculates the acceleration of the particle 
produced by that increased mass.

Step A4 calculates the velocity of the particle 
attained by the time the particle reaches the 
outer surface of stratum i. To do this, it uses 
the average of the accelerations experienced 
at the beginning and ending of stratum i times 
the increment Δj

, divided by the average of the 
velocities attained at the beginning and ending of 
stratum i. This results in the equation shown at 
step A4, which, unfortunately, has vi on both of 
its sides. This requires the solution for vi of the 
equation shown, and then, at last, vi is set to that 
solution.

Step A5 updates the time at the end of stratum i 
using the increment for d while in layer j divided 
by the average of the velocities at the beginning 
and ending of stratum i.

Step A6 tests to see if the particle has stopped 
or turned around. If so, it exits the General 
Procedure A. Otherwise it proceeds to step A7 
which increases the stratum index, i, by one 
and returns to A1 unless this increased stratum 
index, i, belongs to the next layer. In that case, 
step A8 increases the layer index j by one and 
then tests to see if the particle has just arrived 
at the beginning of layer L; that is, it has just 
reached the outer surface of the sphere. If not, the 
procedure returns to A1.

Step A9 tests to see if the particle failed to attain 
a non-positive velocity in layer L. If so, we jump 
to step A11. Otherwise, we continue with the 
procedure.

Step A10 tests to see if the velocity attained 
at the surface of the sphere (which is vi-1, the 
velocity attained at the end of layer L-1) is equal 
to or greater than the sphere’s escape velocity. 
If so, the procedure terminates with the particle 
continuing on forever. If not, the procedure 
returns to step A1 to process layer L, which is, 
if you recall, the vacuum of space outside of 
the sphere. The formula for the escape velocity 
results from equating the kinetic energy 1/2mvi-1

2 
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to the potential energy the particle would have if 
it were located at infinity.2 That is,  
1/2mvi-1

2 = GMi-1m/DL-1, where m is the mass of 
the particle L.

We do not expect to execute step A11, so the 
procedure stops to allow us to make a decision. 
The problem here is that we had set DL to a 
distance that we believed was greater than the 
particle would reach while still having a positive 
velocity. But we are here because the particle’s 
distance did exceed that DL with the particle’s 
velocity still positive. What is wrong? Did 
we underestimate DL? Is there an error in the 
procedure? Did the solver make an arithmetical 
error? Should we quit? An alternative is to 
increase the number of strata in layer L and try 
again. Step A12 does just that.

5. The Turnaround Procedure B

This procedure will be executed if it is discovered 
in Procedure A that the particle will stop and 
reverse its direction. There is a bit of tidying up 
we might want to do before we continue with this 
procedure. This is because, in all likelihood, the 
velocity, vi, will be less than zero, and the particle 
will have attained zero velocity at some place 
within stratum i. Perhaps we should compute a 
“special” Δs < Δj such that if the computations 
A1, A2, A3, A4, and A5 were repeated with Δs, 
then A4 would produce a zero vi and A5 would 
give us the time at which the zero velocity 
occurred. However, this appears to require an 
iterative procedure that does not seem to be 
worth the effort, especially if we have been using 
small values for Δ. (If you think otherwise and 
know a worthwhile way to accomplish the more 
exact result, please let me know.)

Instead, let’s just interpolate linearly for an 
approximate Δs and repeat those calculations but 
fib a little about the new value of vi. That is, let’s 
execute:

B0:  Set Δs = [vi-1/(-vi + vi-1)] Δj.

B1:  Set di = di-1 + Δs.

B2:  Set Mi = Mi-1 + 4/3πμj(di
3 - di-1

3).

B3:  Set ai = -GMi/di
2.

B4:  Set vi = 0.

B5:  Set ti = ti-1 + Δs/[1/2vi-1].

So, now we have positioned the particle at its 
turnaround place and are prepared to do the 
calculations that follow the particle on its way 
back down to the center of the sphere. That is, 
we are in a position to develop the results for the 
last three quarters of the cycle that we now know 
will repeat itself indefinitely. It is not necessary 
to actually recalculate all of those results we 
computed for the first quarter of a cycle. We 
can just copy most of our previous calculations. 
Shown below are the instructions for doing that.

6. The Ending Procedure

We first save the index of the event when the 
velocity of the particle became zero. Let’s call it 
IZERO, and then let’s compute the total number 
of events there will be in a cycle. Let’s call it 
ITOTAL. Thus:

Q1:  Set IZERO = i and ITOTAL = 4IZERO, and  
        then proceed. 
            Here the second quarter feeds off the first  
            quarter. 
    Set I = IZERO + 1. 
    Set k = IZERO – 1.

Q2:  Set di = dk. 
       Set Mi = Mk. 
    Set ai = ak. 
    Set vi = -vk. 
    Set ti = ti-1 + tk+1 - tk. 
    Set i = i + 1. 
    Set k = k - 1. 
    If k > 0, return to Q2; otherwise, proceed. 
            Here the third quarter also feeds off first 
            quarter. 
    Set k = 1.

Q3:  Set di = -dk. 
    Set Mi = Mk. 
    Set ai = -ak.
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    Set vi = -vk. 
    Set ti = ti-1 + tk - tk-1. 
    Set i = i + 1. 
    Set k = k + 1. 
            If k < IZERO, return to Q3; otherwise,  
            proceed. 
            Here the fourth quarter feeds off the  
            second quarter. 
            Set k = IZERO + 1. (This step is  
            unnecessary, but it helps a reader.)

Q4:  Set di = -dk.  
            Set Mi = Mk. 
            Set ai = -ak. 
            Set vi = -vk. 
            Set ti = ti-1 + tk - tk-1. 
            Set i = i + 1. 
            Set k = k + 1. 
            If i < ITOTAL, return to Q4; otherwise,   
            stop.

Here the cycle is complete. We will have all five 
arrays, di, Mi, ai, vi, and ti, completely filled with 
data for i = 1, 2, 3, …, ITOTAL. Those data are 
intended to give a numeric approximation of 
the continuous functions that would be repeated 
endlessly in the idealized situation that has been 
imagined.

There are two other ways that this procedure 
could end. One is if the velocity of the particle 
when it first reaches the surface of the sphere is 
equal to or greater than the escape velocity. This 
stop occurs at step A10 as described in Section 3. 
If that stop occurs, those five data arrays will be 
filled up only to where the distance di equals DL-1; 
that is, only up to the surface of the sphere.

The other ending is at step A11. If no errors have 
occurred, then the reason for this stop is that the 
procedure has reached the distance DL without the 
velocity of the particle becoming non-positive. 
This is an awkward situation, since layer L really 
should have no finite D; but a hard lesson learned 
while programming mainframe computers was 
not to create procedures that permitted infinite 
loops. This procedure does allow the solver to 
increase DL if he chooses to do so. Even though 
the problem dealt with in this essay is an extreme 
simplification of anything that might be found 
in the actual universe, I would be interested in 
learning of any improvement in, or correction to, 
the solution method that may have occurred to 
you. Better still would be an exact, continuous 
solution.
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