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Basic Notions of Mathematical Proofs 
by Dr. Frank Luger, DSPE

Elementary mathematical proofs rest upon the 
basic principles of mathematical logic, which, 
in turn, is a direct application of classical 
Aristotelian logic to mathematics. Classical 
logic was used in Euclid’s Elements, on which 
all traditional geometry and mathematics was 
built, using propositional logic or the logic of 
propositions. The essence of propositional logic 
was laid down in the three famous “laws of 
thought” by Aristotle (384-322 BCE), namely, 
the Law of Identity (A = A), the Law of Non-
Contradiction (A never equals non-A), and the 
Law of the Excluded Middle (either A or non-A). 
They can also be expressed in symbolic logic as 
follows:  
 
If p, then p (p implies p by the Law of Identity).  
 
Not both p and not-p (~[p and ~p], by the Law 
of Non-Contradiction, where the tilde [~] means 
negation). 
 
Either p V ~p by the Law of the Excluded 
Middle, where V means the exclusive “or.”  
 
These “laws of thought” have remained 
essentially unchanged ever since. In propositional 
logic, these basic principles take the following 
form (the Law of Identity is so basic that it is 
taken for granted, so it isn’t even mentioned).  
 
First Principle - Law of the Excluded Middle: 
For any proposition, p, the proposition, “either p 
or not-p” is true. 
 
Second Principle - Law of Contradiction: 
For any proposition, p, the proposition “p and 
not-p” is false.  
 
Third Principle - Law of Transitivity of 
Implication: 
For any propositions, p, q, r, the proposition, “if 
p implies q and q implies r, then p implies r,” is 
true.  

By definition, a general proposition is a 
proposition expressible in one of the following 
forms for a specific designation of x and y:  
 
(a) All x’s are y’s.  
 
(b) No x’s are y’s.  
 
(c) Some x’s are y’s.  
 
(d) Some x’s are not y’s.  
 
Propositions are, many times, stated in the form 
of hypotheses and conclusions. But one must 
be careful, because the conclusion being true 
provides no information in itself about the truth 
or falsity of the hypothesis. 
 
There are certain relationships between 
implications involving the same two statements 
or their negatives that occur sufficiently often to 
make special terminology helpful, as follows. For 
a given implication, “p implies q” or “if p then 
q” or “p only if p” is evident from what has been 
said above. The converse is the implication “q 
implies p” or “if q then p” or “q only if p,” while 
the inverse is the implication “not-p implies 
not-q” or “if not-p then not-q” or “not-p only if 
not-q.”  
 
Finally, the contrapositive is the implication, 
“not-q implies not-p,” or “if not-q then not-p” or 
“not-q only if not-p.” It is noteworthy that a given 
implication and its contrapositive are logically 
equivalent. The concept of logical equivalence 
applies in general to pairs of propositional forms. 
We say that two propositional forms are logically 
equivalent, provided they have the same set of 
meaningful values and the same set of truth 
values; that is, each has the same true-false 
classification as the other for all possible choices 
of the variables. For a true implication, “if p 
then q,” where p and q are propositional forms, 
p is said to be a sufficient condition for q, and q 
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is said to be a necessary condition for p; i.e., q 
necessarily follows from p. 
 
The purpose of the foregoing was as an 
introductory “warm-up” to enable us to apply 
logical principles to finding and proving new 
mathematical results. Mathematics is an abstract 
science in the sense that it consists of a system of 
undefined terms about which certain statements 
are assigned a true classification (these are the 
axioms and the postulates), which, together 
with basic defined terms, are used to develop 
additional propositions. These, in turn, are then 
shown to be true or false according to the rules of 
logic that have so far been considered (such true 
propositions being called theorems). 
 
Many of the new results in such a system are 
proved by direct methods that involve primary 
applications of the Law of Transitivity for 
Implications mentioned above. However, indirect 
methods of proof are also used frequently, both 
in mathematical developments and in everyday 
reasoning, with compelling, even necessarily 
true, results. When a child asks, “Has Daddy 
gone to work?” and Mother answers, “See if the 
car is in the garage,” it is likely that the thought 
pattern involves, “If Daddy has gone to work, 
then the car is gone.” When the child finds the 
car in the garage, he concludes, “If the car has 
not gone, then Daddy has not gone to work,” thus 
utilizing the contrapositive to arrive at a “No” 
answer to his original question.  
 
Direct proofs, both in their forward (reasoning 
from premises to conclusion) and backward 
(reasoning from conclusion to premises) 
varieties, are quite straightforward and, as 
such, need not be treated here. However, while 
a direct proof may often be given where an 
indirect method is employed, the latter is often 
clearer, more forceful, and shorter. This is such 
an important phase of reasoning that it will be 
worthwhile to consider a general analysis and 
some further examples. There are essentially two 
forms in which indirect reasoning may appear, 
frequently interchangeably. 

Form I of Indirect Reasoning  
 
Form I consists of proving the contrapositive 
and, thereby, the desired implication. To show “p 
implies q” is true, we show that “not-q implies 
not-p” is true. For example, we assume simple 
properties of integers and also the definition that 
a prime number is a positive integer which is 
divisible by no other integers than itself and 1. 
 
Proposition: If an integer greater than 2 is prime, 
then it is an odd number. 
 
Proof:  
 
(1) If an integer greater than 2 is not odd, it is 
even, by definition. 
 
(2) If an integer greater than 2 is even, it is 
divisible by 2, by definition. 
 
(3) If an integer greater than 2 is divisible by 2,  
it is not prime. 
 
(4) Hence, if an integer greater than 2 is 
not odd, it is not prime, by the Transitive                  
Property of Implications (vide supra). 
 
(5) Therefore, if an integer greater than 2 is 
prime, then it is an odd number, since step 4 
states the truth of the contrapositive. 
 
QED 
 
QED is a standard abbreviation from Latin, 
quod erat demonstrandum (that which was to 
be proved); but in the case of as-yet unproven 
theorems, it reads quod est demonstrandum 
(that which is to be proved). This is the Latin 
rendering of the original Greek phrases which 
Euclid used to finish or start his proofs, and 
both of these have become habitual expressions 
in the classical mathematical literature of most 
countries. 
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Form II of Indirect Reasoning  
 
Form II essentially follows the pattern below: 
 
(a) To prove true: p implies q, where p has a              
true classification. 
 
(b) Show: p and not-q imply r, where r is known 
to be false. 
 
(c) A false conclusion indicates a false             
hypothesis; hence, not-q is false. 
 
(d) Not-q being false shows that q is true. This is 
the desired result.

For example, assume the usual terminology of 
plane geometry and the proposition, “From a 
point not on a straight line, one perpendicular, 
and only one, can be drawn to the line.” Prove 
the proposition. 
 
Proposition: Two straight lines in the same plane 
perpendicular to the same line are parallel. 
 
Notation: Let L be the given line through distinct 
points A and C, with AB perpendicular to L at A 
and CD perpendicular to L at C. 
 
Restatement: If AB and CD are each 
perpendicular to L, then AB and CD are parallel. 
 
Proof: Assume p (AB is perpendicular to L and 
CD is perpendicular to L) and not-q (AB and CD 
are not parallel). 
 
(1) AB and CD not parallel imply that AB and 
CD intersect in a unique point P, by definition of 
parallel lines. 
 

(2) AB and CD are distinct lines through  
point P not on L, both perpendicular to L, by 
hypothesis p.  
 
(3) This is false by the proposition quoted for             
reference. 
 
(4) Hence, not-q is false, since a false conclusion 
requires a false hypothesis in a true implication. 
 
(5) Therefore, AB and CD are parallel (q is true). 
 
Indirect methods of reasoning are sometimes 
called “proof by contradiction” (or reductio ad 
absurdum) due to the property of arriving at 
the negative, or contradiction, of a known true 
proposition. By virtue of the laws of thought 
cited above, (self-)contradictions are absurd and 
may, therefore, be safely discarded.  
 
When the deductive aspect of inquiry, which 
has been emphasized above, is applied to 
mathematics or to other scientific fields, it 
frequently is preceded by an inductive aspect. 
The latter is concerned with the search for facts 
or information by observation and experimental 
procedure. Once the available facts have been 
assimilated, the scientist proceeds by induction 
to the formulation of a hypothesis or premise of 
a general nature to explain the particular facts 
observed and the relationships among them. 
The deductive aspect involves logical reasoning 
leading from this hypothesis to new statements 
or principles, which then may be checked against 
the facts already available. This use of inductive 
and deductive procedures to complement, 
reinforce, and check each other in the formulation 
of scientific knowledge comprises the main part 
of what is called the scientific method. 
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