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Introduction 
 
In an ISPE social media group post, a Fellow 
member of ISPE presented a “physics topic” 
question about why the primary and secondary 
colors form a color wheel (i.e., a circular shape) 
if the colors in the visible light spectrum are 
arranged linearly in the order red, orange, yellow, 
green, blue, indigo, and violet.1 The question 
articulation included the following points:

1) The primary colors red and yellow 
combine to make the secondary color 
orange, and the wavelength of orange is 
between red and yellow in the spectrum.

2) The primary colors yellow and blue 
combine to make the secondary color 
green, and the wavelength of green is 
between yellow and blue in the spectrum. 

3) The pattern of 1 and 2 above is broken 
with purple because the primary colors 
red and blue make purple, but purple 
(violet) has a shorter wavelength than 
blue and so it is not between red and blue 
in the visible light spectrum.

In the discussion thread of the post, an additional 
question arose about what structural changes 
would occur to the color wheel if we could see 
more than three primary colors. This article 
answers these questions by beginning with why 
violet violates a pattern, moving on to what the 
pattern is, then proceeding to the development of 
color “wheels” for higher numbers of primary 
colors.  
 
Physics and Biology in Color Perception 
 
Although purple is a special case in human 
vision, the first step in seeing why it is special is 
to dispel the belief in the ostensible pattern above 
that has made purple seem exceptional. From 
physics, we know that the visible light spectrum 
corresponds to linearly changing wavelengths. 
But a second fact from physics is that two waves 
of any kind that have different wavelengths do 
not combine to produce one wave with a 
wavelength between the two original 
wavelengths. In particular, visible light is 
comprised of discrete wave-particle duals called 
photons that don’t directly combine with one 
another at all.2 Therefore, purple doesn’t defy a 
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physics-based pattern of wavelength 
combination—there is no such physics-based 
pattern. Instead, perceptions of combined colors 
result from the human biological process 
described below. 
 
Normal human eyes achieve sight using two 
kinds of sensors: rods and cones. Rods are used 
primarily for night vision, and cones are used for 
color vision in daylight. Human vision is called 
trichromatic because there are three types of 
cones: S-cones, M-cones, and L-cones. In the 
1950s, George Wald performed experiments to 
determine the light sensitivities of our eye cones.3 
S-cones are sometimes called blue cones because 
they are most sensitive to shorter wavelengths of 
blue and violet light. M-cones are sometimes 
called green cones because they are most 
activated by green and yellow light in the middle 
of the wavelength range of visible light. The 
L-cones are sometimes called red cones and are 

most sensitive to longer wavelengths of visible 
light in the range from yellow to red light. 
Figure 1 is a visual summarization of Wald’s 
work in which the solid blue, green, and red 
curves show the sensitivities of S-cones, 
M-cones, and L-cones relative to light 
wavelengths measured in nanometers (nm).4  
 
As the diagram in Figure 1 illustrates, the light 
sensitivities of human eye cones are not matched 
well with the definition of primary colors being 
red, yellow, and blue. The reason is that red, 
yellow, and blue are the primary colors for 
mixing light-absorbing pigments, such as those 
used in painting, whereas the colors red, green, 
and blue are more commonly used as the primary 
colors of light-emitting systems, such as 
televisions and computer screens, because their 
light emissions are intended to be absorbed by 
the pigments in human eye cones.5  
 

Figure 1. The light-wavelength absorption sensitivities of normal human eye cones and rods. The 
dotted curve is for rods, and the three solid curves are for the S-cones (max. at 420 nm), the M-cones 
(max. at 534 nm), and the L-cones (max. at 564 nm).6 
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Even with a change of primary colors, there is 
more to human color vision than just light 
absorption by pigments in three types of eye 
cones. The greatest sensitivities of the so-called 
“blue” and “green” cones are similar to but not 
quite the same as their color names: S-cones are 
most sensitive between blue and violet light, and 
the greatest sensitivity of M-cones is between 
green and yellow. However, the so-called “red” 
cones (L-cones) are most highly activated by 
yellow light, not red light.  
 
In general, humans perceive most colors by 
detecting differences in the activation levels of 
different types of cones. For example, although 
L-cones are most highly activated by yellow 
light, they are still partly activated by red light, 
whereas M-cones are not. Hence, orange is 
perceived by detecting the amount of the 
difference between the activation levels of 
L-cones and M-cones. This neurological 
(biological) process applies not only to 
perceiving orange, but also to perceiving shades 
of red, yellow, green, cyan, blue, indigo, and 
violet. 
 
Perceiving Purple 
 
The neurological process of color perception 
loses the information about whether a differential 
in cone activation is due to one wavelength or 
more than one wavelength of light. For example, 
consider two methods for perceiving the color 
orange, based on Figure 1 and sample 
wavelengths of red, orange, and yellow.7 If the 
orange color perception is the result of a single 
wavelength of orange light (e.g., about 600 nm), 
then the L-cones are much more highly activated 
than the M-cones. If the eyes are instead 
subjected to the combination of yellow light (e.g., 
about 570 nm) and red light (e.g., about 640 nm), 
then the yellow light activates the L-cones 
somewhat more than the M-cones, but the red 
light further augments the activation of the 
L-cones with little to no further activation of the 
M-cones. The net result is that the L-cones are 
more activated than the M-cones by 

approximately the same differential with red and 
yellow light as they were with orange light. 
 
For many pairs of wavelengths, such as red and 
yellow, the neurological process of color 
perception produces the same result as if the eyes 
were receiving a single wavelength that is 
between the pair of wavelengths, such as orange. 
However, the combined perception of red and 
blue does not follow this pattern, since the 
wavelength range of violet (purple) is not 
between those of red and blue. Nonetheless, 
perceiving red and blue as purple is consistent 
with our neurological color-perception process 
when interpreted with Wald’s results depicted in 
Figure 1.  
 
From Figure 1, as monochromatic light 
wavelength decreases into the blue and then 
violet ranges, S-cone activation is high but 
decreases, M-cone activation is essentially 
constant, and L-cone activation is low but 
increases. The increase in activation of the 
pigment in L-cones in the violet light range is the 
key factor in why red and blue look like purple. 
For example, using Figure 1 and sample 
wavelengths of colors of the visible light 
spectrum,8 a wavelength of blue (e.g., 450 nm) 
and a wavelength of red (e.g., 640 nm) produce 
activation levels for the S-cones and M-cones 
that are similar to the activation levels of S-cones 
and M-cones produced by a single wavelength of 
violet (e.g., 400 nm). For the violet wavelength, 
the activation of L-cones is higher than it is for 
the blue wavelength, but the red light further 
activates the L-cones only, with the net result that 
red and blue look like violet (purple). 
 
Cone Combinatorics 
 
Although the linear visible light spectrum maps 
into the shape of a color wheel due to increased 
activation of L-cones in the wavelength range of 
violet light, it is the mapping and not the shape 
that is surprising. A shape homeomorphic to a 
wheel, such as a triangle, would still be a natural 
representation for showing primary and 
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secondary colors, even if human L-cones had no 
increased activation in the wavelength range of 
violet light. As shown in Figure 2, a wheel or 
triangle can have three vertices to represent the 
three primary colors; and it can have three edges 
(or curve segments) connecting pairs of vertices, 
each representing a secondary color that is the 
combination of the colors of its two vertex 
endpoints. For the edge connecting the vertices 
labeled R and B, humans may perceive its 
associated color as purple because of the extra 
L-cone activation region in the violet range; but 
if that activation region did not exist, then the 
R-B edge would still exist but would simply look 
different. Although it wouldn’t be purple, it also 
wouldn’t be just red nor just blue. Rather, it 
would look like whatever color name we would 
give to the simultaneous perception of red and 
blue.  
 
In the same way, we use the color name “white” 
to refer to the simultaneous perception of all 
three primary colors. The color wheel also has a 
structural component for representing the 
perception of the color white: it has an internal 
region surrounded by the R-G-B cycle that can be 
associated with the simultaneously high 

activation of S-cones, M-cones, and L-cones. 
Similarly, the external region outside of the 
R-G-B cycle can be used to represent the absence 
of activation of any cones, which we perceive as 
the color black. 
 
In the branch of mathematics called graph theory, 
a graph is a mathematical data structure 
comprised of a set V of vertices and a set E of 
edges, each of which has a pair of vertices from V 
as its endpoints. The graph in Figure 2 is called a 
complete graph on three vertices because there is 
an edge in E for every pair of vertices from V. 
The notation Kn is used as a shorthand for a 
complete graph on n vertices, so the complete 
graph in Figure 2 is denoted K3.

9  
 
In the branch of mathematics called 
combinatorics, the binomial coefficients are 
positive integers that represent choosing k items 
from n items as calculated by the formula  
n!/k!(n-k)!, which is called the “n choose k” 
formula.10 For the case of trichromacy, we have 
three primary colors, so n=3. Choosing zero of 
the three colors yields the color black, and there 
is only one way to make the choice:  
3!/(0!(3-0)!)=1. The formula also tells us that 

Figure 2. On the left is a trichromatic color wheel showing three vertices for three primary 
colors (red, green, and blue), three lines for secondary colors (yellow, cyan, and magenta), 
and internal and external regions for the presence or absence of all three primary colors. 
The color wheel is homeomorphic to a color triangle, which is shown on the right above. 
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there are three ways to choose k=1 color or  
k=2 colors from the n=3 colors, and the graph K3 
in Figure 2 shows the three primary colors as 
vertices and the three secondary colors as edges. 
The internal region surrounded by the cycle of 
vertices and edges in K3 corresponds to the one 
way to choose three colors from a set of three 
primary colors, 3!/(3!(3-3)!) = 1; and the color 
white maps to choosing to activate all three 
primary colors. Note that the full two-
dimensional space of Figure 2 is required to 
represent the four possible values of choosing k 
colors from n=3 colors.    
 
These mathematical foundations are useful for 
answering the question of what a color “wheel” 
would look like for organisms whose color vision 
exceeds three distinct channels of color. For 
example, several species of birds, insects, and 
other animals have an additional type of eye cone 
for sensing ultraviolet light, so they have 
tetrachromatic vision.11 When the number of 
primary colors increases to n=4, then the 
complete graph on four vertices, or K4, can be 
used to help represent all the color combinations. 
In Figure 3, the vertices and edges of the K4 are  
 

arranged into the shape of a color sphere, which 
is homeomorphic to the color tetrahedron shown 
on the right in Figure 3. The four vertices 
represent the colors red, green, blue, and 
ultraviolet. There are “4 choose 2” equals 6 edges 
because 4!/(2!(4-2)!) = (4×3×2×1)/((2×1)×(2×1)) 
= 6. Each edge represents one of the six 
secondary colors obtained by combining the pair 
of colors associated with the vertex endpoints of 
the edge, such as green-ultraviolet. The edges 
divide the sphere’s surface into four regions, or 
faces, each homeomorphic to a triangle. Each 
triangular face can be used to represent the 
tertiary color that a tetrachromat perceives when 
its eyes simultaneously receive the three primary 
colors of the vertices along the border of the face. 
For example, the front-top face would represent 
the color red-green-ultraviolet, and the back-right 
face would represent the color red-blue-
ultraviolet. The ball (volume of space) within the 
color sphere would correspond to white 
(choosing four of four colors), and the volume of 
space outside the color sphere would correspond 
to black (choosing zero of four colors). 
 
There are a few observations about the 
trichromatic color triangle in Figure 2 and the 

Figure 3. On the left is a color sphere representing color combinations for tetrachromats. The vertices 
and edges of a K4 are arranged into a sphere that can represent all primary, secondary, and tertiary 
colors of tetrachromacy. The volume of space inside the sphere represents white, and the volume of 
space outside the sphere represents black. The color sphere is homeomorphic to a color tetrahedron, 
shown on the right. It is the higher-dimensional analog of the color triangle shown in Figure 2.   
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tetrachromatic color tetrahedron in Figure 3 that 
can help with the generalization of the 
multidimensional shape that can represent the 
basic color combinations of n-chromatic vision. 
For representing basic color combinations of 
trichromatic vision, a K3 is embedded in two-
dimensional space with its vertices and edges 
appearing along the perimeter of a triangle. For 
representing basic color combinations of 
tetrachromatic vision, a K4 is embedded in three-
dimensional space with its vertices and edges 
appearing along the surface of a tetrahedron. 
Using substitution of n to follow the pattern, for 
representing basic color combinations of 
n-chromatic vision, a Kn would be embedded in 
an “n-1”-dimensional space with its vertices and 
edges appearing along the surface of an  
“n-1”-dimensional simplex that is also sometimes 
called a hypertetrahedron.12 For each value of k 
between 0 and n, the complete graph Kn has “n 
choose k” distinct complete subgraphs of the 
form Kk. For each value of k, each  
“k-1”-dimensional region in which each distinct 
Kk subgraph is embedded can be colored with the 
perception that results from combining the k 
primary colors associated with the k vertices 
along the boundary surface of the region. 
 
The utility of hypertetrahedrons as a visual aid 
for showing color combinations decreases as 
dimensionality increases beyond our normal 
experience of three spatial dimensions. However, 
it is possible to see the generalization in action at 
one higher dimension, for pentachromatic 
vision.13 As an example, consider a fifth type of 
eye cone—one that is activated by X-rays—that 
may be present in the citizens of the imaginary 
planet Krypton.14 According to the generalization 
above, a K5 would be embedded as a 
hypertetrahedron in four-dimensional space. It 
would be difficult even for Superman15 to directly 
imagine a four-dimensional hypertetrahedron, but 
it is possible for both Superman and mere mortals 
to see most of it using the dimension-“flattening” 
technique that we have already used in Figure 3. 
The tetrahedron shown in Figure 3 is a three-
dimensional object rendered on the page in a 

flattened, two-dimensional format. It looks like a 
triangle with an additional central vertex that 
forms additional triangles inside, and depth-
perception cues trigger our ability to imagine the 
three-dimensional tetrahedron. Analogously, 
Figure 4 illustrates that a three-dimensional 
projection of a four-dimensional hypertetrahedron 
looks like a tetrahedron with an additional central 
vertex that forms additional tetrahedrons inside.  
 
Using the diagram in Figure 4, we can iterate 
sequentially through the values of k from 0 to 
n=5 to see how the components of the tetrahedron 
can represent pentachromatic color combinations. 
The values k=0 and k=5 will be saved for last. 
Starting with k=1, there are five K1 subgraphs that 
are embedded as vertices and that represent the 
five primary colors in Superman’s eye cones. 
There are “5 choose 2” equals 10 K2 subgraphs 
that are embedded as edges and that can each be 
colored with the secondary color perception 
representing the combination of the primary 
colors of the edge’s endpoint vertices. There are 
“5 choose 3” = 5!/3!(5-3)! = 10 K3 subgraphs, 
each of which is embedded as a triangle, whose 
internal region can be colored with the tertiary 
color perception obtained from combining the 
three primary colors of the vertices along the 
triangle’s boundary.  
 
The most interesting case that can be directly 
seen in Figure 4 occurs when k=4. There should 
be “5 choose 4” = 5!/(4!(5-4)!) = 5 K4 subgraphs 
embedded as tetrahedrons and whose “internal” 
regions can each be colored with the quaternary 
color perception corresponding to the 
combination of the four primary colors of the 
vertices along the tetrahedron’s boundary. It is 
easy to see how this can occur for four of the five 
tetrahedrons: the bottommost tetrahedron bound 
by XR, B, UV, and G; the front-facing 
tetrahedron bound by XR, R, G, and UV; the 
rightmost tetrahedron bound by XR, B, UV, and 
R; and a tetrahedron at the back of the diagram 
bound by XR, R, G, and B. There is a fifth 
tetrahedron bound by R, G, B, and UV, but its 
internal region appears to contain the other 
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tetrahedrons. This is an artifact of flattening the 
hypertetrahedron into a three-dimensional form, 
just as three of the four triangular faces of the 
tetrahedron in Figure 3 appear as though they are 
inside of the triangle bound by R, G, and UV in 
the two-dimensional flattened version of the 
tetrahedron. Because we fully understand three 
spatial dimensions, we know that the fourth 
triangle bound by R, G, and UV in Figure 3 is a 
separate triangle with nothing in its internal 
region. But if we understood only two spatial 
dimensions, then we could simulate an internal 
region for that triangle by using the external 
region that is outside of the triangle, because that 
external region is still separated from the internal 
regions associated with the other triangles. In the 
same way, the three-dimensional external region 
outside of the tetrahedron bound by R, G, B, and 
UV in Figure 4 is a fifth region that can be 
colored with the quaternary color perception 
associated with simultaneous activation of 
Superman’s R, G, B, and UV eye cones.  

From the perspective of direct spatial 
understanding, the most difficult pentachromatic 
color-combination cases occur when k=0 and 
k=5. These cases have been saved for last 
because, as far as has been documented, not even 
Superman can directly imagine four spatial 
dimensions. According to the generalization, 
there should be “5 choose 0” = 1 K0 subgraph, 
which is an empty graph, with no vertices or 
edges, that corresponds to the color black because 
zero eye cones are being activated by the zero 
colors chosen. In the lower dimensions, such as 
the triangle in Figure 2 or the tetrahedron in 
Figure 3, we were able to associate the color 
black with the external region outside of the 
triangle or tetrahedron. For the hypertetrahedron, 
we cannot see such an external region because it 
is only in four-dimensional space; but we can 
reason by analogy that it exists. Similarly, 
according to the generalization, there should be 
“5 choose 5” = 1 K5 subgraph on the five 
primary-color vertices—which can be seen as 

Figure 4. This three-dimensional projection of a four-dimensional hypertetrahedron shows how 
the basic color combinations for pentachromats (except white and black) can be represented. 
The vertices and edges represent the primary and secondary colors. The ten triangular faces 
correspond to the ten tertiary colors that pentachromats perceive, and there are five tetrahedrons 
that can be associated with each of the five quaternary colors of pentachromatic vision. 
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true in Figure 4—and there should be a region 
that is inside of a boundary surface in four-
dimensional space that contains all five vertices. 
We cannot directly see this boundary surface nor 
the internal region because we are looking at a 
flattened, three-dimensional representation of the 
hypertetrahedron in Figure 4, and this is 
analogous to not being able to perceive the 
surface of the tetrahedron in Figure 3 until we 
transform the two-dimensional, flattened diagram 
into a three-dimensional representation in our 
minds. Although Superman cannot, as far as we 
know, perform the same transformation of the 
diagram in Figure 4 into a four-dimensional 
mental representation, even we mere mortals can, 
once again, reason by analogy that there is a 
boundary surface in four-dimensional space that 
contains all five vertices and that separates the 
external region we associated with black from an 
internal region that we can associate with the 
color white because it represents simultaneous 
activation of all five of Superman’s eye cones. 
 
Topology Only Scratches the Surface 
 
Because of the complexities introduced by higher 
dimensionality, it is natural to wonder whether 
the extra dimensionality is necessary. Is there, for 
example, a way to create a color sphere or similar 
surface for pentachromats analogous to the color 
sphere for tetrachromats in Figure 3? Keeping in 
mind that a sphere is the two-dimensional surface 
of a three-dimensional ball, the short answer is 
that complete graphs on five (or more) vertices 
can be embedded only onto a two-dimensional 
surface that is more complex than a sphere, but 
the embedding does not produce regions that can 
be associated with all combinations of three or 
more primary colors.  
 
Due to Euler’s formula relating the number of 
vertices, edges, and faces of planar graph 
embeddings,16 there is no way to embed a K5 onto 
a plane surface without crossing edges.17 Since a 
plane can be mapped onto a sphere using a 
technique called stereographic projection,18 there 
is also no way to embed K5 onto a sphere without 

crossing edges. The absence of crossed edges is 
important because having crossed edges would 
mean that the face associated with two different 
cycles (“closed walks”) of vertices and edges 
would overlap; it would not be possible to 
associate a single color with a face based on the 
vertices along its border.  
 
In the branch of mathematics called topology, the 
complexity of (orientable) surfaces is measured 
by genus, which is the number of holes in the 
surface.19 A sphere has genus 0, and the next 
simplest surface of genus 1 is a torus, which is 
the two-dimensional surface of a three-
dimensional object that looks like a donut or a 
coffee mug with a handle. As shown in Figure 5, 
a K5 can be embedded onto a torus without 
crossing any edges. However, the embedding has 
only four triangular faces, so the embedding does 
not create separate regions on the torus that could 
be colored with the other six of the ten tertiary 
colors in pentachromatic vision. Furthermore, 
although there are five other distinct ways to 
embed a K5 onto a torus,20 none have enough 
distinct faces on the torus for representing all 
tertiary colors. Similarly, the simplest non-
orientable surface is the Möbius strip,21 and there 
are two distinct ways to embed K5 onto it,22 
neither of which contains enough faces to 
represent all tertiary colors of pentachromatic 
vision.  
 
The limitations of surfaces described above for 
pentachromacy are representative of the general 
case for n-chromacy with n ≥ 5. By selecting a 
sufficiently complex surface, Kn can be embedded 
with no crossing edges, so the primary colors can 
be displayed at vertex locations on the surface, 
and all secondary colors can be shown along the 
embeddings of the edges on the surface. 
However, a generalization of Euler’s formula 
gives the limits based on surface complexity for 
how many faces an embedding in a surface can 
have,23 and the limits are less than the binomial 
coefficient value for “n choose 3.” Specifically, 
based on Euler’s generalized formula, the number 
of faces F created by a graph embedding must be 
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less than or equal to m – n + 2, where m is the 
number of edges and n is the number of vertices 
in the graph. A complete graph Kn has n vertices 
and n(n-1)/2 edges. So, F ≤ (n(n-1)/2) – n + 2. 
Meanwhile, for n-chromacy with n ≥ 5, the 
number of tertiary colors is “n choose 3” =  
n!/(3!(n-3)!) = (n(n-1)(n-2))/6, which is greater 
than or equal to n(n-1)/2 when n ≥ 5. Since, with 
n ≥ 5, the number of tertiary colors in 
n-chromatic vision is at least n(n-1)/2, and there 
are, at most, (n(n-1)/2) – n + 2 faces in an 
embedding of Kn onto any surface, we can 
conclude that complete graph embeddings on 
two-dimensional surfaces do not have enough 
faces to associate with the tertiary colors of 
n-chromatic vision, not to mention the need for 
more faces to associate with the combinations of 
four or more colors. 
 

Conclusion 
 
There is a conspicuous line in The Matrix that 
expresses a commonplace gustatory concept in an 
unusual way: “… maybe they couldn’t figure out 
what to make chicken taste like, which is why 
chicken tastes like everything.”24 The usual 
expression is the other way around, such as, 
“Don’t be afraid to eat frog legs; they taste just 
like chicken.” Relations such as “A tastes like B” 
are symmetric because the order of the operands 
A and B can be reversed.25 If something tastes 
like chicken, then chicken tastes like that thing, 
too. The optical relation “A looks like B” is 
similarly symmetric.  
 
In answer to the first question in the Introduction, 
the increased activation of our L-cones in the 
wavelength range of violet light—as well as the 

Figure 5. A complete graph on five vertices; i.e., a K5, embedded on a torus (a sphere with 
a handle). This embedding shows that only four of the ten tertiary colors are represented by 
triangular faces of the embedding. This is one of only six distinct ways to embed a K5 on a 
torus, each of which does not have enough faces to represent all tertiary colors. 



 43 TELICOM 33, No. 1 — First Quarter 2021

information loss intrinsic to our trichromatic 
color perception—are the combined reasons why 
red and blue look like purple and, symmetrically, 
why purple looks like red and blue. Makes one 
wonder what would have happened if Neo (in 
The Matrix) had taken both the red pill and the 
blue pill.26 
 
The symmetric relation between purple and the 
combination of red and blue, which is 
implemented by our optical neural processing, 
maps the linear sequence of wavelengths of the 
visible light spectrum onto a color wheel. 
However, even if our L-cones were not more 
highly activated by violet light than by blue light, 
a color wheel would still have been a suitable 
structure for showing all primary and secondary 
color combinations of trichromatic vision 
because it has the same basic structure as a 

complete graph on three vertices drawn as a 
triangle.  
 
In answer to the second question in the 
Introduction, a color sphere, or color tetrahedron, 
can be used to show the four primary colors, six 
secondary color combinations, and four tertiary 
color combinations of tetrachromatic vision. 
More generally, a complete graph on n vertices 
embedded as a hypertetrahedron in  
“n-1”-dimensional space is suitable for 
representing all basic color combinations of 
n-chromatic vision.  
 
And now that you know this, there’s no going 
back; so, delight in the knowledge and never 
wonder, “Why, oh, why didn’t I take the blue 
pill?!”27 
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