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Introduction 
 
Play. We all do it. It’s fun. Quite a while ago, I 
came to the conclusion that playfulness is an 
essential survival skill. Currently, one can easily 
find supporting academic literature1 and general-
interest literature2 using web search queries 
along the lines of “playfulness as a survival 
skill.” Play helps us to sharpen skills and widen 
the number and variety of scenarios in which we 
can properly apply those sharpened skills. 
Playfulness in thinking, then, can result in 
sharper and more fluid thought processes in 
real-life scenarios. And there’s a name I use for 
the reward component of the operant 
conditioning mechanism that biologically 
reinforces playfulness: It’s fun. 
 
Throughout everyday life, I like to fill in the 
thinking blanks by having fun with words and 
numbers. Although many opportunities for 
elaborate mental play arise, in this paper I am 
referring to mental games that are relatively 
simple and quickly executed. For example, 
quick word plays are often puns, like thinking I 
wonder what’s “happy Ning” today? while 
“opeNing” the ISPE social media platform. 
Puns are formed by making small changes at 
symbolic levels, such as lexical, aural, or 
grammatical changes, that produce larger effects 
at the semantic level. They seem to me to be 
miniature practice runs of the creativity it takes 
to think laterally of a tactical action that helps 
achieve an objective one deems important. For a 
pun, the objective is to get you to laugh or, at 
least, to enjoy the groan while you’re groaning. 
 
My number plays are analogous to puns, except 
that the small tactical actions typically involve 
variations of arithmetical operations. I start by 
picking a number from my surroundings, such 
as a house address, a phone number, or the 
concatenation of the digits of distance traversed 

and calories burned during exercise. Next, I’ll 
pick a single-digit number as an objective, such 
as a favorite number from childhood. Then, I’ll 
make new numbers from parts of the start 
number by inserting arithmetical operations, 
such as adding and multiplying, and by using 
basic functions, like averaging. I iterate this 
process and, at each step, choose operations and 
insertion points that appear to help generate 
numbers that get closer to, and finally arrive at, 
the single-digit objective.  
 
Recently, I ran across an unexpected fact that 
caused me to add divisibility to my repertoire of 
toys for arriving at the single-digit objective. Let 
me tell you about it. Why? Because if you’re 
still reading this, then you might find that… it’s 
fun. 
 
Simple Divisibility Methods 
 
To set a baseline for computational complexity, 
we’ll start with 1. Is a given number divisible by 
1? The answer is, of course, yes. No matter the 
number, this just mentally returns true. That’s 
OK, though, because I never pick 1 as the 
objective, anyway.  
 
Slightly more complex is divisibility by 2 and 5, 
which involves simple conditional logic to 
select the rightmost digit of the base-10 
expression of the number and to perform a set 
membership test on {0, 2, 4, 6, 8} for divisibility 
by 2 and on {0, 5} for divisibility by 5. We 
typically learn this so early in life that it just 
comes naturally; but the reason it’s true is that 
all natural-number powers of 10 are divisible by 
2 and 5, so we can focus on the ones place of a 
number because we’re just getting a whole 
number of additional twos or fives from higher 
place-value digits. For example, each hundred is 
just 20 more fives or 50 more twos. 
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The case for 4 is only a little more complex. If a 
number’s rightmost two digits form a number 
that is even when halved, then the number is 
divisible by 4. The reason this works is an 
extension of the reasoning that worked for 
divisibility by 2 and 5. All digits of a number in 
the hundreds place or higher express values that 
yield a whole number of additional fours, so we 
can focus on the value formed by just the tens 
and ones places of a number. 
 
The last simple single-digit case is 8. Every 
incremental value of 200 expresses exactly 25 
more eights, so we can ignore all digits in the 
thousands place and higher, and we can form a 
value with the tens and ones places, plus 100 if 
the original number’s hundreds place contains 
an odd value. For example, 2968 is divisible by 
8 because 168 is 21 more eights than the 350 in 
2800. 
 
I’ve referred to these methods as simple for two 
reasons. First, they require only a constant 
amount of mental effort no matter the size of the 
number being considered. Second, one is 
convinced of their correctness by an informal, 
plainspoken explanation. These two reasons do 
not characterize the remaining single-digit 
divisibility methods.  
 
Divisibility by 9 and Proof by Mathematical 
Induction 
 
Many years ago, I ran across the following 
recreational mathematics practice problem: use 
mathematical induction to prove that a number 
is divisible by 9 if, and only if, the sum of its 
digits is also divisible by 9. For example, the 
number 3843 is a multiple of 9 because 
3+8+4+3=18, and 18 is a multiple of 9. To me, 
this seemed like an isolated, but still interesting, 
piece of information worth doing the exercise to 
prove it to be true by the method of 
mathematical induction. 
 
In non-mathematical circles, inductive reasoning 
has a bit of a bad reputation because humans use 
available data to infer generalizations that may 

or may not, in fact, be true.3 A faulty 
generalization occurs when one jumps to a 
conclusion that fits available data but may not fit 
all data about a phenomenon. In the world of 
artificial intelligence, this same kind of 
inductive reasoning is performed by methods of 
machine learning that seek to learn coefficients 
or weight values that cause the machine-learned 
model to most accurately fit the available 
training data. Like a human’s faulty 
generalization, a machine-learned model may 
very accurately map to available data but then 
perform poorly when faced with new data about 
the same phenomenon.4 
 
Mathematical induction, on the other hand, 
takes the extra step of rigor needed to prove that 
a generalization from initial data is appropriate. 
Mathematical induction is performed on 
phenomena that are parameterized by the natural 
numbers by showing two things:  
 
(1) that the phenomenon is true for some base 
case, such as when n=1, and  
 
(2) that the phenomenon generalizes to the case 
n+1 if we assume it is true for case n.  
 
The analogy often used is that of a domino 
effect. If the phenomenon is true for n=1, and 
it’s true for the successor of n (i.e., for n+1), 
then it is true for case n=2. Then, if the 
phenomenon is true for n=2 and for n+1, then it 
is true for n=3. This logic applies repeatedly 
without limit, like a sequence of dominoes 
falling in succession, to inexorably establish the 
truth of the phenomenon for each higher natural-
number value.5 
 
Consider this phenomenon: For any positive 
multiple of 9, the sum of its digits is also a 
positive multiple of 9. Let’s start with the first 
multiple of 9 (n=1). With no doubt, the sum of 
its digits is a multiple of 9. Now, with the 
second multiple of 9 (n=2), we see that 1+8 is 
also 9; and for n=3, we see that the sum of digits 
of the third multiple of 9, 2+7, again equals 9. 
It’s tempting to check the next few values of n 
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and then jump to the conclusion that the 
phenomenon is true in general. But 
mathematical induction is more rigorous. We 
must prove that the phenomenon is true for each 
and every next value of n.  
 
The key to creating a proof by mathematical 
induction is to use the assumed fact that the 
phenomenon is true for a case n, without picking 
a specific value for n, to help prove that the 
phenomenon is true for case n+1. So, without 
picking a specific value for n, we can assume 
that the nth multiple of 9 has digits that sum to a 
multiple of 9. Now, imagine how the nth multiple 
of 9 is written. It’s a base-10 number that has a 
ones place, a tens place, a hundreds place, and 
so on, for as many places as are needed to 
represent it. Because we didn’t pick a specific n, 
we don’t know the specific digit values in the nth 
multiple of 9, but we do know how addition 
works on base-10 numbers. This enables us to 
figure out how the sum of the digits will change 
when we add 9 and do any necessary carry 
operations to complete the addition. 
 
Let Xn denote the nth multiple of 9. This means 
Xn = 9×n (e.g., X427=3843). Let Sn denote the 
sum of the digits of Xn (for example, S427 = 
3+8+4+3=18). Using this notation, Xn+1 is the 
(n+1)th multiple of 9, and so it equals Xn+9. 
Similarly, Sn+1 denotes the sum of the digits of 
Xn+1, and the question is whether we can use the 
assumed fact that Sn is a multiple of 9 to prove 
that Sn+1 is also a multiple of 9. Enter the rules 
of addition.  
 
Consider the ones place digit of Xn. It’s either a 
0, or it is not a 0. If it is a 0, then adding 9 to Xn 
has the effect of changing the ones place from 0 
to 9, which adds 9 to the sum of the digits. 
Therefore, Sn+1 is 9 greater than Sn, and so it is a 
multiple of 9. If, on the other hand, the ones 
place digit of Xn is not 0, then adding 9 to Xn has 
a wraparound effect on the ones place that 
decrements the digit and produces a carry of one 
to the higher-placed digits of Xn. In the earlier 
example of 3843, if we add 9, then we get 3852. 
The ones place was reduced by 1, and we 

carried one to the tens place, which incremented 
it. Note that a carry operation may carry the one 
across several digits if they were originally 
nines. Those digits change from nines to zeros, 
so the sum of digits will still be a lesser multiple 
of 9. For example, with X433=3897, S433=27, 
X434=3906, and S434=18, the tens place changed 
from 9 to 0, which reduced the sum of digits by 
9. So, according to the rules of addition, when 
the ones place of Xn is not 0, adding 9 to Xn has 
the following effects: 
 
1)  The ones place of Xn is decremented by 1, 
 
2)  A higher digit of Xn is incremented by the 
carried one, and 
 
3)  Any digits between where the carrying starts 
and ends are reduced from 9 to 0. 
 
Therefore, Sn+1 is also a multiple of 9 when the 
ones place digit of Xn is not 0 because it is either 
equal to Sn or to Sn minus a 9 for each digit that 
was reduced from 9 to 0.  
 
The same ideas can be applied to prove by 
induction that any natural number that is not 
divisible by 9 has a sum of digits that is not 
divisible by 9. Specifically, the starting case 
would be one of the digits 1 to 8, none of which 
sum to 9. Then, if you successively add nines to 
any of those of digits, the resulting numbers 
continue to have digit sums that are not 
multiples of 9.   
 
The proof above demonstrates that, 
qualitatively, more formality is needed to 
convince someone that the summing-digits 
method for testing divisibility by 9 is correct. 
The technique is also more complex because, 
although the addition is simple for each digit, 
one must mentally process all the digits of a 
number to get an answer.    
 
Divisibility by 3: A Game Changer 
 
Because the number base, 10, figured 
prominently in the proof of correctness for the 
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method of divisibility by 9, I found it surprising 
recently when a friend commented that the 
digit-summing method also works for 
divisibility by 3. Once you know this, proving it 
involves an easy adjustment to the proof for 
divisibility by 9, so I will leave it as an exercise 
for the reader.  
 
Learning that summing digits could be used to 
test divisibility by 3 was, however, a game 
changer, literally. Beforehand, the divisibility-
by-9 test had seemed isolated. Afterward, a new 
goal emerged: add single-digit divisibility 
testing to my number-play repertoire!  
 
Divisibility by 6 and Proof by Contradiction 
 
Given the divisibility-by-3 method, divisibility 
by 6 is now easy to solve. A number divisible by 
6 must be divisible by both 2 and 3. Hence, one 
simply determines that the number is even and 
that its digits sum to a multiple of 3. To 
exemplify another proof technique, we’ll prove 
this by contradiction. In a proof by 
contradiction, one initially assumes the negation 
of a desired statement and then takes logical 
steps from that assumption until an obvious 
absurdity results, like the truth and fallacy of the 
same statement. Working the logic backwards 
from the absurdity establishes the absurdity of 
the initially assumed negation and, hence, the 
truth of the desired statement.6 
 
Initially assume that a number, X, exists which 
is a multiple of 6 but is not divisible by both 2 
and 3. Since X is a multiple of 6, it can be 
written as X = 6K = 2×3×K for some whole 
number, K. Since K is a whole number, so are 
2K and 3K. Since X divided by 2 gives 3K with 
no remainder, and X divided by 3 gives 2K with 
no remainder, we reach a contradiction of the 
initial assumption because X cannot be both 
divisible and not divisible by 2 and 3. 

Divisibility by 7 and Creativity by 
Composition 
 
Upon learning of the easy method for testing 
divisibility by 3, the question of how to test for 
divisibility by 7 hit like the smack of a glove on 
the cheek. A challenge. The only digit left. But 
this time, the question wasn’t how to prove 
correct a given method for testing divisibility. 
The question was how to create a provably 
correct method. Granted, one could just do a 
web search to look for one, but there’s a reason 
we climb mountains even though others have 
already climbed them, or play games that others 
have already played. We do it because it’s fun. 
 
My first thought about creating a method was 
consistent with the creative mode of a software 
architect: I thought about building the new thing 
out of existing things without changing the 
internal operations of the existing things. To me, 
it was clear that the summing-digits method for 
divisibility by 9 worked because numbers are 
expressed in base 10. So my first thought was 
that the same method would work for 
divisibility by 7 if only the input number were 
changed to be expressed in base 8, which is 
called the octal number system.7 While that may 
sound a bit far-fetched, it’s not as preposterous 
as a first reaction by those with a computer 
engineering background who have training in 
number bases that are powers of two. For 
example, the numeric part of the “Inchworm” 
song8 inflicted on—ahem—sung to my daughter 
in her childhood, typically ended not with 
“sixteen and sixteen are thirty-two” but with 
“sixteen million, seven hundred seventy-seven 
thousand, two hundred sixteen and sixteen 
million, seven hundred seventy-seven thousand, 
two hundred sixteen are thirty three million, five 
hundred fifty-four thousand, four hundred 
thirty-two.” 
 
The typical way that a computer engineer 
converts a number to octal is to first convert it to 
binary digits called bits, and then convert groups 
of 3 bits into octal digits. The decimal number 
system that we normally use has the ones, tens, 
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hundreds, and thousands places, corresponding 
to powers of 10. By comparison, binary has the 
ones (20), twos (21), fours (22), and eights (23) 
places; and octal has the ones (80), eights (81), 
sixty-fours (82), and five hundred twelves (83) 
places. In the decimal number system, the digit 
values are 0 to 9. In binary, the valid bit values 
are only 0 and 1, and octal digits range from 0 to 
7. For an example, the base-10 number 3899 in 
the binary representation is as follows: 
 
2048 + 1024 + 512 + 256 + 0×128 + 0×64 + 32 
+ 16 + 8 + 0×4 + 2 + 1 = 111 100 111 011 
 
Each three binary bits are capable of 
representing a number from 0 to 7, which maps 
exactly to the range of an octal digit because 8 = 
23. For this reason, the bits above are arranged 
in groups of three so that it is easier to see that 
they map to the octal digits 7 4 7 3. The sum of 
these four octal digits is 21 in decimal, which is 
25 in octal (2×81 + 5×80). The sum of the digits 
in the octal number 25 is 7, and, sure enough, it 
is the third multiple of 7. So the original 
number, 3899, in decimal is also divisible by 7. 
As you can see, by converting the decimal 
number first to binary and then to octal, we were 
able to use digit summing to test for divisibility 
by 7.  
 
Although this method works, the problem is that 
it is more complex than just doing division. As 
an example, let’s compare the above 
calculations to the operations one performs 
when mentally testing 3899 for divisibility by 7. 
One can easily test this number as follows: 
 
1)  3500 is five hundred sevens, so look at 
what’s left: 399 (3899 – 3500); 
 
2)  350 is fifty sevens, so look at what’s left: 49 
(399 – 350); and 
 
3)  49 is the square of seven, so 3899 is divisible 
by 7.  
 
More generally, to test divisibility by 7 using 
division, we find the closest multiple of the 

divisor that doesn’t exceed the value of the first 
one or two digits of the dividend, subtract the 
multiple from the value to get the remainder, 
append the next digit of the dividend, and repeat 
these steps until the digits of the dividend are 
processed. In essence, we perform about three 
simple operations per step, and the number of 
steps is approximately equal to the number of 
digits in the dividend. 
 
By comparison, testing divisibility by 7 by 
converting to binary, then octal, then summing 
octal digits takes many more operations. In the 
analysis of the approximate number of 
operations, we will rely on two facts: 
 
Fact 1.  The base b logarithm of a number X, 
denoted logb(X), approximates how many digits 
are in the base b representation of X. This is true 
because a logarithm indicates the power to 
which the base must be raised in order to get a 
number, and the place values of the number 
represent successive powers of the number base. 
 
Fact 2.  A logarithm can be converted from base 
b to base a using logb(X)=loga(X) / loga(b).9   
 
Converting a number, X, from decimal to binary 
involves working with descending powers of 2 
starting with the one that doesn’t exceed X. For 
each power of 2, a 0 bit results if X is less than 
the power of 2. Otherwise, a 1 bit is the output, 
and the power of 2 is subtracted from X before 
proceeding to the next-lower power of 2. For 
each binary bit, we perform a comparison and 
also a subtraction (when generating a 1). Since 
there is a 50% probability that a randomly 
selected bit in a randomly selected number will 
be a 1, the average number of operations to 
convert to binary is 1.5 times the number of bits. 
By Fact 1, the number of bits is approximately 
log2(X), and the number of decimal digits is 
approximately log10(X). By Fact 2, 
log10(X)=log2(X) / log2(10). Solving 
algebraically for the ratio log2(X) / log10(X) 
gives log2(10), which is about 3.32 and, based 
on Fact 1, is the approximate ratio of bits to 
decimal digits. Despite being a slight 
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overestimation, it suffices for estimating that 
conversion of a number X to binary requires 
about 5 (≈3.32×1.5) operations per decimal digit 
of X. Using similar calculations, there are 
approximately 1.1 octal digits per decimal digit 
in a number, so converting to octal requires 
about 1.1 operations per decimal digit, and 
summing the octal digits requires about 1.1 
more operations per decimal digit. In the final 
tally, this new method requires about 7 mental 
operations per decimal digit compared with only 
3 operations per decimal digit for using division 
to test divisibility by 7.  
 
Divisibility by 7 and Creativity by Adaptation 
 
In search of a simpler approach, I switched to a 
creative mode consistent with being a software 
algorithm developer. In this mode, one begins to 
“dream up” or imagine or create a new 
algorithm by first trying to adapt a known 
algorithm, i.e., by “playing with” or adjusting its 
internal operations to make it applicable to the 
problem at hand. Instead of just thinking about 
known algorithms from the outside, based on 
what they do, we switch to thinking about 
known algorithms from the inside, based on how 
and why they work. For testing divisibility by 9, 
a digit-summing method worked, so let’s see 
how that might be adjusted to test for divisibility 
by 7. 
 
For divisibility by 9, the analysis in the proof by 
induction revealed two cases: adding 9 to a 
number, Xn, either didn’t cause a carry or did 
cause a carry. When a carry occurred, there was 
a balance: the carry added 1, but the ones place 
decreased by 1, and any other digit changes 
were from 9 to 0. This balance meant that there 
was no change between Xn and Xn+9 in whether 
the sum of digits was a multiple of 9. 
 
For divisibility by 7, the same two cases 
emerge. If adding 7 to a number, Xn, doesn’t 
cause a carry, then the sum of digits of Xn+1 (i.e., 
of Xn+7) is increased by 7. But when the ones 
place of Xn is in the range 3 to 9, then two 
problems occur. First, any extra digits changed 

by a carry operation are changed by 9, which 
doesn’t help divisibility by 7 quite as it did 
divisibility by 9. Second, there is an imbalance, 
because a carry of 1 to the higher digits is 
mismatched with a decrease of 3 in the ones 
place. For an example of both problems, 3899 + 
7 = 3906.  
 
To solve the first problem, let’s amend the 
algorithm. What if, instead of summing the 
digits above the ones place, we just take a sum 
that involves a single number formed by all 
digits of Xn except the ones place? For example, 
let the revised summing algorithm operate on 
3899 by taking 389 plus something involving 
the 9 in the ones place, and let it operate on 
3906 by taking 390 plus something involving 
the 6 in the ones place.  
 
We could refer to the higher digits of Xn using 
the notation Hn and the ones place using On. 
Then, the revised summing algorithm is simply 
to take Hn+f(On) for some function f. This solves 
the first problem in which the value of the 
higher digits of Xn+1, denoted Hn+1, increments 
by only 1 due to a carry no matter how the digits 
within Hn+1 change relative to Hn. The notation 
also allows us to characterize the second 
problem as an imbalance in the changes that 
occur to Hn and On when adding 7 to Xn. 
Specifically, although Hn+1 = Hn+1, the ones 
place digit of Xn+1, denoted On+1, is 3 less than 
On.  
 
Rather than decreasing On by 3, we need a 
decrease of 1 more than some multiple of 7. 
That decrease, when combined with increasing 
Hn by 1, would mean that the sum would 
decrease by an exact multiple of 7. What if we 
use Hn+5On as the revised summing algorithm? 
This way, a decrease of 3 in On corresponds to a 
decrease of 15 in 5On, where 15 is one more 
than a multiple of 7. Put another way, 
Hn+1+5On+1=Hn+5On –14.  And, when adding 7 
to Xn produces no carry in the ones place, then 
Hn+1+5On+1=Hn+5On+35. In both cases, the 
sum’s divisibility or non-divisibility by 7 is 
preserved between Xn and Xn+1 = Xn+7.  
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To test an example, 3899 would be processed as 
389+45=434. If it is not visually apparent that 
the result is divisible by 7, one can iterate the 
processing: 434 would be processed as 
43+20=63, and we know from the normal 12×12 
multiplication table that 63 is divisible by 7.  
 
Divisibility by 7: There is No Spoon 
 
The summing method we have just created for 
testing divisibility by 7 is easier than the earlier 
method that required binary and octal 
conversions, but how easy is it? Let’s do a little 
more algorithm analysis. For the divisibility-
by-9 test, the sum of the digits of X won’t 
exceed 9×floor(1+log10(X)), where “floor” 
means truncate any decimal part. This is true 
because base-10 digits cannot exceed 9 and 
because floor(1+log10(X)) more accurately 
characterizes the base-10 digit count of X than 
did Fact 1 above. Thus, the sum of digits of any 
number under a trillion will still be in the range 
of the products appearing in the normal 12×12 
multiplication table. For example, to do mental 
calculations on phone numbers, you’ll only have 
to sum the digits once to get an answer. By 
comparison, the summing method above for 
testing if X is divisible by 7 produces an answer 
that is never smaller than one digit less than X. 
This means that you must mentally perform the 
summing method at least once for each digit of 
X more than two digits, in order to reduce the 
answer down to something from the normal 
12×12 multiplication table. 
 
On the surface, it seems that the complexity 
difference is that of performing only one 
summing operation (for divisibility by 9) versus 
performing a summing operation for each digit 
(for divisibility by 7). However, for divisibility 
by 9, the complexity is hidden inside the 
method. One must still perform an operation 
with each digit, namely, to add it to an 
accumulated total. The reason that the 
divisibility-by-7 summing method is more 
complex is because it also requires more mental 
work for each digit. One must multiply On by 5 
before adding it to anything, and then the 

addition of 5On to Hn is harder because the 
numbers are larger than just adding a digit value 
to an accumulated sum of digits.   
 
Clearly, the summing method for testing 
divisibility by 7 is harder than just summing 
digits, but is it at least easier than using 
division? Well, as shown above, testing 
divisibility by 7 with division requires a number 
of steps commensurate with the number of 
digits and about 3 simple operations per step. 
With the new summing method, there are two 
steps to compute 5On and Hn, and a third to add 
them. So, it’s close. Adaptation yielded a better 
creative result than composition. However, 
division is simpler because the work is more 
compartmentalized and performed on smaller 
numbers. With the new summing method, the 
numbers are larger, so adding 5On most often 
involves two single-digit additions, and carry 
operations may extend through the length of the 
sum. 
 
This begs the question: is there a divisibility-
by-7 testing method that is simpler than 
division?  It’s hard to prove the non-existence of 
a method, but let’s check if there are any giants 
upon whose shoulders we can stand. By 
extending to the web our search for a simpler 
method, we discover in the public domain not 
only one but a list of eight “shorthand” methods 
for testing divisibility by 7, including the 
method we created.10 Upon close examination, 
none of these methods that have been 
popularized over the last 50 years lives up to the 
descriptor of being a “shorthand” for testing 
divisibility by 7, which provides strong evidence 
supporting the assertion that there is no 
shorthand method. We are left with the 
surprising result that division is the best mental 
method for testing divisibility by 7. 
 
Conclusion 
 
In this paper, I began by asserting that 
playfulness is essential as it helps us sharpen 
and widen the critical skills we need to achieve 
our objectives and goals in life. While searching 
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for a new way to play with numbers, we took 
quite a tour of topics, including mathematical 
proof techniques, artificial intelligence, number 
representation schemes, algorithm analysis, and 
creative processes. A key observation is that the 
imaginative “what if” processing used to create 
a new algorithm by adaptation is strikingly 
similar to the processing involved in performing 

word plays and number plays. Often, playing 
with available concepts by making small tactical 
changes can, indeed, result in achieving an 
important objective. And regardless of whether 
achieving that objective supports the intended 
strategic goal or produces a surprising 
alternative result, it is worth the effort because… 
it’s fun.  
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