
 49 TELICOM 31, No. 1 — First Quarter 2019

Introduction

Play. We all do it. It’s fun. Quite a while ago, I
came to the conclusion that playfulness is an
essential survival skill. Currently, one can easily
find supporting academic literature1 and general-
interest literature2 using web search queries
along the lines of “playfulness as a survival
skill.” Play helps us to sharpen skills and widen
the number and variety of scenarios in which we
can properly apply those sharpened skills.
Playfulness in thinking, then, can result in
sharper and more fluid thought processes in
real-life scenarios. And there’s a name I use for
the reward component of the operant
conditioning mechanism that biologically
reinforces playfulness: It’s fun.

Throughout everyday life, I like to fill in the
thinking blanks by having fun with words and
numbers. Although many opportunities for
elaborate mental play arise, in this paper I am
referring to mental games that are relatively
simple and quickly executed. For example,
quick word plays are often puns, like thinking I
wonder what’s “happy Ning” today? while
“opeNing” the ISPE social media platform.
Puns are formed by making small changes at
symbolic levels, such as lexical, aural, or
grammatical changes, that produce larger effects
at the semantic level. They seem to me to be
miniature practice runs of the creativity it takes
to think laterally of a tactical action that helps
achieve an objective one deems important. For a
pun, the objective is to get you to laugh or, at
least, to enjoy the groan while you’re groaning.

My number plays are analogous to puns, except
that the small tactical actions typically involve
variations of arithmetical operations. I start by
picking a number from my surroundings, such
as a house address, a phone number, or the
concatenation of the digits of distance traversed

and calories burned during exercise. Next, I’ll
pick a single-digit number as an objective, such
as a favorite number from childhood. Then, I’ll
make new numbers from parts of the start
number by inserting arithmetical operations,
such as adding and multiplying, and by using
basic functions, like averaging. I iterate this
process and, at each step, choose operations and
insertion points that appear to help generate
numbers that get closer to, and finally arrive at,
the single-digit objective.

Recently, I ran across an unexpected fact that
caused me to add divisibility to my repertoire of
toys for arriving at the single-digit objective. Let
me tell you about it. Why? Because if you’re
still reading this, then you might find that… it’s
fun.

Simple Divisibility Methods

To set a baseline for computational complexity,
we’ll start with 1. Is a given number divisible by
1? The answer is, of course, yes. No matter the
number, this just mentally returns true. That’s
OK, though, because I never pick 1 as the
objective, anyway.

Slightly more complex is divisibility by 2 and 5,
which involves simple conditional logic to
select the rightmost digit of the base-10
expression of the number and to perform a set
membership test on {0, 2, 4, 6, 8} for divisibility
by 2 and on {0, 5} for divisibility by 5. We
typically learn this so early in life that it just
comes naturally; but the reason it’s true is that
all natural-number powers of 10 are divisible by
2 and 5, so we can focus on the ones place of a
number because we’re just getting a whole
number of additional twos or fives from higher
place-value digits. For example, each hundred is
just 20 more fives or 50 more twos.

Playfulness and Mental Methods for Divisibility by
Small Numbers
by John M. Boyer, PhD, MSPE

50 TELICOM 31, No. 1 — First Quarter 2019

The case for 4 is only a little more complex. If a
number’s rightmost two digits form a number
that is even when halved, then the number is
divisible by 4. The reason this works is an
extension of the reasoning that worked for
divisibility by 2 and 5. All digits of a number in
the hundreds place or higher express values that
yield a whole number of additional fours, so we
can focus on the value formed by just the tens
and ones places of a number.

The last simple single-digit case is 8. Every
incremental value of 200 expresses exactly 25
more eights, so we can ignore all digits in the
thousands place and higher, and we can form a
value with the tens and ones places, plus 100 if
the original number’s hundreds place contains
an odd value. For example, 2968 is divisible by
8 because 168 is 21 more eights than the 350 in
2800.

I’ve referred to these methods as simple for two
reasons. First, they require only a constant
amount of mental effort no matter the size of the
number being considered. Second, one is
convinced of their correctness by an informal,
plainspoken explanation. These two reasons do
not characterize the remaining single-digit
divisibility methods.

Divisibility by 9 and Proof by Mathematical
Induction

Many years ago, I ran across the following
recreational mathematics practice problem: use
mathematical induction to prove that a number
is divisible by 9 if, and only if, the sum of its
digits is also divisible by 9. For example, the
number 3843 is a multiple of 9 because
3+8+4+3=18, and 18 is a multiple of 9. To me,
this seemed like an isolated, but still interesting,
piece of information worth doing the exercise to
prove it to be true by the method of
mathematical induction.

In non-mathematical circles, inductive reasoning
has a bit of a bad reputation because humans use
available data to infer generalizations that may

or may not, in fact, be true.3 A faulty
generalization occurs when one jumps to a
conclusion that fits available data but may not fit
all data about a phenomenon. In the world of
artificial intelligence, this same kind of
inductive reasoning is performed by methods of
machine learning that seek to learn coefficients
or weight values that cause the machine-learned
model to most accurately fit the available
training data. Like a human’s faulty
generalization, a machine-learned model may
very accurately map to available data but then
perform poorly when faced with new data about
the same phenomenon.4

Mathematical induction, on the other hand,
takes the extra step of rigor needed to prove that
a generalization from initial data is appropriate.
Mathematical induction is performed on
phenomena that are parameterized by the natural
numbers by showing two things:

(1) that the phenomenon is true for some base
case, such as when n=1, and

(2) that the phenomenon generalizes to the case
n+1 if we assume it is true for case n.

The analogy often used is that of a domino
effect. If the phenomenon is true for n=1, and
it’s true for the successor of n (i.e., for n+1),
then it is true for case n=2. Then, if the
phenomenon is true for n=2 and for n+1, then it
is true for n=3. This logic applies repeatedly
without limit, like a sequence of dominoes
falling in succession, to inexorably establish the
truth of the phenomenon for each higher natural-
number value.5

Consider this phenomenon: For any positive
multiple of 9, the sum of its digits is also a
positive multiple of 9. Let’s start with the first
multiple of 9 (n=1). With no doubt, the sum of
its digits is a multiple of 9. Now, with the
second multiple of 9 (n=2), we see that 1+8 is
also 9; and for n=3, we see that the sum of digits
of the third multiple of 9, 2+7, again equals 9.
It’s tempting to check the next few values of n

 51 TELICOM 31, No. 1 — First Quarter 2019

and then jump to the conclusion that the
phenomenon is true in general. But
mathematical induction is more rigorous. We
must prove that the phenomenon is true for each
and every next value of n.

The key to creating a proof by mathematical
induction is to use the assumed fact that the
phenomenon is true for a case n, without picking
a specific value for n, to help prove that the
phenomenon is true for case n+1. So, without
picking a specific value for n, we can assume
that the nth multiple of 9 has digits that sum to a
multiple of 9. Now, imagine how the nth multiple
of 9 is written. It’s a base-10 number that has a
ones place, a tens place, a hundreds place, and
so on, for as many places as are needed to
represent it. Because we didn’t pick a specific n,
we don’t know the specific digit values in the nth
multiple of 9, but we do know how addition
works on base-10 numbers. This enables us to
figure out how the sum of the digits will change
when we add 9 and do any necessary carry
operations to complete the addition.

Let Xn denote the nth multiple of 9. This means
Xn = 9×n (e.g., X427=3843). Let Sn denote the
sum of the digits of Xn (for example, S427 =
3+8+4+3=18). Using this notation, Xn+1 is the
(n+1)th multiple of 9, and so it equals Xn+9.
Similarly, Sn+1 denotes the sum of the digits of
Xn+1, and the question is whether we can use the
assumed fact that Sn is a multiple of 9 to prove
that Sn+1 is also a multiple of 9. Enter the rules
of addition.

Consider the ones place digit of Xn. It’s either a
0, or it is not a 0. If it is a 0, then adding 9 to Xn
has the effect of changing the ones place from 0
to 9, which adds 9 to the sum of the digits.
Therefore, Sn+1 is 9 greater than Sn, and so it is a
multiple of 9. If, on the other hand, the ones
place digit of Xn is not 0, then adding 9 to Xn has
a wraparound effect on the ones place that
decrements the digit and produces a carry of one
to the higher-placed digits of Xn. In the earlier
example of 3843, if we add 9, then we get 3852.
The ones place was reduced by 1, and we

carried one to the tens place, which incremented
it. Note that a carry operation may carry the one
across several digits if they were originally
nines. Those digits change from nines to zeros,
so the sum of digits will still be a lesser multiple
of 9. For example, with X433=3897, S433=27,
X434=3906, and S434=18, the tens place changed
from 9 to 0, which reduced the sum of digits by
9. So, according to the rules of addition, when
the ones place of Xn is not 0, adding 9 to Xn has
the following effects:

1) The ones place of Xn is decremented by 1,

2) A higher digit of Xn is incremented by the
carried one, and

3) Any digits between where the carrying starts
and ends are reduced from 9 to 0.

Therefore, Sn+1 is also a multiple of 9 when the
ones place digit of Xn is not 0 because it is either
equal to Sn or to Sn minus a 9 for each digit that
was reduced from 9 to 0.

The same ideas can be applied to prove by
induction that any natural number that is not
divisible by 9 has a sum of digits that is not
divisible by 9. Specifically, the starting case
would be one of the digits 1 to 8, none of which
sum to 9. Then, if you successively add nines to
any of those of digits, the resulting numbers
continue to have digit sums that are not
multiples of 9.

The proof above demonstrates that,
qualitatively, more formality is needed to
convince someone that the summing-digits
method for testing divisibility by 9 is correct.
The technique is also more complex because,
although the addition is simple for each digit,
one must mentally process all the digits of a
number to get an answer.

Divisibility by 3: A Game Changer

Because the number base, 10, figured
prominently in the proof of correctness for the

52 TELICOM 31, No. 1 — First Quarter 2019

method of divisibility by 9, I found it surprising
recently when a friend commented that the
digit-summing method also works for
divisibility by 3. Once you know this, proving it
involves an easy adjustment to the proof for
divisibility by 9, so I will leave it as an exercise
for the reader.

Learning that summing digits could be used to
test divisibility by 3 was, however, a game
changer, literally. Beforehand, the divisibility-
by-9 test had seemed isolated. Afterward, a new
goal emerged: add single-digit divisibility
testing to my number-play repertoire!

Divisibility by 6 and Proof by Contradiction

Given the divisibility-by-3 method, divisibility
by 6 is now easy to solve. A number divisible by
6 must be divisible by both 2 and 3. Hence, one
simply determines that the number is even and
that its digits sum to a multiple of 3. To
exemplify another proof technique, we’ll prove
this by contradiction. In a proof by
contradiction, one initially assumes the negation
of a desired statement and then takes logical
steps from that assumption until an obvious
absurdity results, like the truth and fallacy of the
same statement. Working the logic backwards
from the absurdity establishes the absurdity of
the initially assumed negation and, hence, the
truth of the desired statement.6

Initially assume that a number, X, exists which
is a multiple of 6 but is not divisible by both 2
and 3. Since X is a multiple of 6, it can be
written as X = 6K = 2×3×K for some whole
number, K. Since K is a whole number, so are
2K and 3K. Since X divided by 2 gives 3K with
no remainder, and X divided by 3 gives 2K with
no remainder, we reach a contradiction of the
initial assumption because X cannot be both
divisible and not divisible by 2 and 3.

Divisibility by 7 and Creativity by
Composition

Upon learning of the easy method for testing
divisibility by 3, the question of how to test for
divisibility by 7 hit like the smack of a glove on
the cheek. A challenge. The only digit left. But
this time, the question wasn’t how to prove
correct a given method for testing divisibility.
The question was how to create a provably
correct method. Granted, one could just do a
web search to look for one, but there’s a reason
we climb mountains even though others have
already climbed them, or play games that others
have already played. We do it because it’s fun.

My first thought about creating a method was
consistent with the creative mode of a software
architect: I thought about building the new thing
out of existing things without changing the
internal operations of the existing things. To me,
it was clear that the summing-digits method for
divisibility by 9 worked because numbers are
expressed in base 10. So my first thought was
that the same method would work for
divisibility by 7 if only the input number were
changed to be expressed in base 8, which is
called the octal number system.7 While that may
sound a bit far-fetched, it’s not as preposterous
as a first reaction by those with a computer
engineering background who have training in
number bases that are powers of two. For
example, the numeric part of the “Inchworm”
song8 inflicted on—ahem—sung to my daughter
in her childhood, typically ended not with
“sixteen and sixteen are thirty-two” but with
“sixteen million, seven hundred seventy-seven
thousand, two hundred sixteen and sixteen
million, seven hundred seventy-seven thousand,
two hundred sixteen are thirty three million, five
hundred fifty-four thousand, four hundred
thirty-two.”

The typical way that a computer engineer
converts a number to octal is to first convert it to
binary digits called bits, and then convert groups
of 3 bits into octal digits. The decimal number
system that we normally use has the ones, tens,

 53 TELICOM 31, No. 1 — First Quarter 2019

hundreds, and thousands places, corresponding
to powers of 10. By comparison, binary has the
ones (20), twos (21), fours (22), and eights (23)
places; and octal has the ones (80), eights (81),
sixty-fours (82), and five hundred twelves (83)
places. In the decimal number system, the digit
values are 0 to 9. In binary, the valid bit values
are only 0 and 1, and octal digits range from 0 to
7. For an example, the base-10 number 3899 in
the binary representation is as follows:

2048 + 1024 + 512 + 256 + 0×128 + 0×64 + 32
+ 16 + 8 + 0×4 + 2 + 1 = 111 100 111 011

Each three binary bits are capable of
representing a number from 0 to 7, which maps
exactly to the range of an octal digit because 8 =
23. For this reason, the bits above are arranged
in groups of three so that it is easier to see that
they map to the octal digits 7 4 7 3. The sum of
these four octal digits is 21 in decimal, which is
25 in octal (2×81 + 5×80). The sum of the digits
in the octal number 25 is 7, and, sure enough, it
is the third multiple of 7. So the original
number, 3899, in decimal is also divisible by 7.
As you can see, by converting the decimal
number first to binary and then to octal, we were
able to use digit summing to test for divisibility
by 7.

Although this method works, the problem is that
it is more complex than just doing division. As
an example, let’s compare the above
calculations to the operations one performs
when mentally testing 3899 for divisibility by 7.
One can easily test this number as follows:

1) 3500 is five hundred sevens, so look at
what’s left: 399 (3899 – 3500);

2) 350 is fifty sevens, so look at what’s left: 49
(399 – 350); and

3) 49 is the square of seven, so 3899 is divisible
by 7.

More generally, to test divisibility by 7 using
division, we find the closest multiple of the

divisor that doesn’t exceed the value of the first
one or two digits of the dividend, subtract the
multiple from the value to get the remainder,
append the next digit of the dividend, and repeat
these steps until the digits of the dividend are
processed. In essence, we perform about three
simple operations per step, and the number of
steps is approximately equal to the number of
digits in the dividend.

By comparison, testing divisibility by 7 by
converting to binary, then octal, then summing
octal digits takes many more operations. In the
analysis of the approximate number of
operations, we will rely on two facts:

Fact 1. The base b logarithm of a number X,
denoted logb(X), approximates how many digits
are in the base b representation of X. This is true
because a logarithm indicates the power to
which the base must be raised in order to get a
number, and the place values of the number
represent successive powers of the number base.

Fact 2. A logarithm can be converted from base
b to base a using logb(X)=loga(X) / loga(b).9

Converting a number, X, from decimal to binary
involves working with descending powers of 2
starting with the one that doesn’t exceed X. For
each power of 2, a 0 bit results if X is less than
the power of 2. Otherwise, a 1 bit is the output,
and the power of 2 is subtracted from X before
proceeding to the next-lower power of 2. For
each binary bit, we perform a comparison and
also a subtraction (when generating a 1). Since
there is a 50% probability that a randomly
selected bit in a randomly selected number will
be a 1, the average number of operations to
convert to binary is 1.5 times the number of bits.
By Fact 1, the number of bits is approximately
log2(X), and the number of decimal digits is
approximately log10(X). By Fact 2,
log10(X)=log2(X) / log2(10). Solving
algebraically for the ratio log2(X) / log10(X)
gives log2(10), which is about 3.32 and, based
on Fact 1, is the approximate ratio of bits to
decimal digits. Despite being a slight

54 TELICOM 31, No. 1 — First Quarter 2019

overestimation, it suffices for estimating that
conversion of a number X to binary requires
about 5 (≈3.32×1.5) operations per decimal digit
of X. Using similar calculations, there are
approximately 1.1 octal digits per decimal digit
in a number, so converting to octal requires
about 1.1 operations per decimal digit, and
summing the octal digits requires about 1.1
more operations per decimal digit. In the final
tally, this new method requires about 7 mental
operations per decimal digit compared with only
3 operations per decimal digit for using division
to test divisibility by 7.

Divisibility by 7 and Creativity by Adaptation

In search of a simpler approach, I switched to a
creative mode consistent with being a software
algorithm developer. In this mode, one begins to
“dream up” or imagine or create a new
algorithm by first trying to adapt a known
algorithm, i.e., by “playing with” or adjusting its
internal operations to make it applicable to the
problem at hand. Instead of just thinking about
known algorithms from the outside, based on
what they do, we switch to thinking about
known algorithms from the inside, based on how
and why they work. For testing divisibility by 9,
a digit-summing method worked, so let’s see
how that might be adjusted to test for divisibility
by 7.

For divisibility by 9, the analysis in the proof by
induction revealed two cases: adding 9 to a
number, Xn, either didn’t cause a carry or did
cause a carry. When a carry occurred, there was
a balance: the carry added 1, but the ones place
decreased by 1, and any other digit changes
were from 9 to 0. This balance meant that there
was no change between Xn and Xn+9 in whether
the sum of digits was a multiple of 9.

For divisibility by 7, the same two cases
emerge. If adding 7 to a number, Xn, doesn’t
cause a carry, then the sum of digits of Xn+1 (i.e.,
of Xn+7) is increased by 7. But when the ones
place of Xn is in the range 3 to 9, then two
problems occur. First, any extra digits changed

by a carry operation are changed by 9, which
doesn’t help divisibility by 7 quite as it did
divisibility by 9. Second, there is an imbalance,
because a carry of 1 to the higher digits is
mismatched with a decrease of 3 in the ones
place. For an example of both problems, 3899 +
7 = 3906.

To solve the first problem, let’s amend the
algorithm. What if, instead of summing the
digits above the ones place, we just take a sum
that involves a single number formed by all
digits of Xn except the ones place? For example,
let the revised summing algorithm operate on
3899 by taking 389 plus something involving
the 9 in the ones place, and let it operate on
3906 by taking 390 plus something involving
the 6 in the ones place.

We could refer to the higher digits of Xn using
the notation Hn and the ones place using On.
Then, the revised summing algorithm is simply
to take Hn+f(On) for some function f. This solves
the first problem in which the value of the
higher digits of Xn+1, denoted Hn+1, increments
by only 1 due to a carry no matter how the digits
within Hn+1 change relative to Hn. The notation
also allows us to characterize the second
problem as an imbalance in the changes that
occur to Hn and On when adding 7 to Xn.
Specifically, although Hn+1 = Hn+1, the ones
place digit of Xn+1, denoted On+1, is 3 less than
On.

Rather than decreasing On by 3, we need a
decrease of 1 more than some multiple of 7.
That decrease, when combined with increasing
Hn by 1, would mean that the sum would
decrease by an exact multiple of 7. What if we
use Hn+5On as the revised summing algorithm?
This way, a decrease of 3 in On corresponds to a
decrease of 15 in 5On, where 15 is one more
than a multiple of 7. Put another way,
Hn+1+5On+1=Hn+5On –14. And, when adding 7
to Xn produces no carry in the ones place, then
Hn+1+5On+1=Hn+5On+35. In both cases, the
sum’s divisibility or non-divisibility by 7 is
preserved between Xn and Xn+1 = Xn+7.

 55 TELICOM 31, No. 1 — First Quarter 2019

To test an example, 3899 would be processed as
389+45=434. If it is not visually apparent that
the result is divisible by 7, one can iterate the
processing: 434 would be processed as
43+20=63, and we know from the normal 12×12
multiplication table that 63 is divisible by 7.

Divisibility by 7: There is No Spoon

The summing method we have just created for
testing divisibility by 7 is easier than the earlier
method that required binary and octal
conversions, but how easy is it? Let’s do a little
more algorithm analysis. For the divisibility-
by-9 test, the sum of the digits of X won’t
exceed 9×floor(1+log10(X)), where “floor”
means truncate any decimal part. This is true
because base-10 digits cannot exceed 9 and
because floor(1+log10(X)) more accurately
characterizes the base-10 digit count of X than
did Fact 1 above. Thus, the sum of digits of any
number under a trillion will still be in the range
of the products appearing in the normal 12×12
multiplication table. For example, to do mental
calculations on phone numbers, you’ll only have
to sum the digits once to get an answer. By
comparison, the summing method above for
testing if X is divisible by 7 produces an answer
that is never smaller than one digit less than X.
This means that you must mentally perform the
summing method at least once for each digit of
X more than two digits, in order to reduce the
answer down to something from the normal
12×12 multiplication table.

On the surface, it seems that the complexity
difference is that of performing only one
summing operation (for divisibility by 9) versus
performing a summing operation for each digit
(for divisibility by 7). However, for divisibility
by 9, the complexity is hidden inside the
method. One must still perform an operation
with each digit, namely, to add it to an
accumulated total. The reason that the
divisibility-by-7 summing method is more
complex is because it also requires more mental
work for each digit. One must multiply On by 5
before adding it to anything, and then the

addition of 5On to Hn is harder because the
numbers are larger than just adding a digit value
to an accumulated sum of digits.

Clearly, the summing method for testing
divisibility by 7 is harder than just summing
digits, but is it at least easier than using
division? Well, as shown above, testing
divisibility by 7 with division requires a number
of steps commensurate with the number of
digits and about 3 simple operations per step.
With the new summing method, there are two
steps to compute 5On and Hn, and a third to add
them. So, it’s close. Adaptation yielded a better
creative result than composition. However,
division is simpler because the work is more
compartmentalized and performed on smaller
numbers. With the new summing method, the
numbers are larger, so adding 5On most often
involves two single-digit additions, and carry
operations may extend through the length of the
sum.

This begs the question: is there a divisibility-
by-7 testing method that is simpler than
division? It’s hard to prove the non-existence of
a method, but let’s check if there are any giants
upon whose shoulders we can stand. By
extending to the web our search for a simpler
method, we discover in the public domain not
only one but a list of eight “shorthand” methods
for testing divisibility by 7, including the
method we created.10 Upon close examination,
none of these methods that have been
popularized over the last 50 years lives up to the
descriptor of being a “shorthand” for testing
divisibility by 7, which provides strong evidence
supporting the assertion that there is no
shorthand method. We are left with the
surprising result that division is the best mental
method for testing divisibility by 7.

Conclusion

In this paper, I began by asserting that
playfulness is essential as it helps us sharpen
and widen the critical skills we need to achieve
our objectives and goals in life. While searching

56 TELICOM 31, No. 1 — First Quarter 2019

for a new way to play with numbers, we took
quite a tour of topics, including mathematical
proof techniques, artificial intelligence, number
representation schemes, algorithm analysis, and
creative processes. A key observation is that the
imaginative “what if” processing used to create
a new algorithm by adaptation is strikingly
similar to the processing involved in performing

word plays and number plays. Often, playing
with available concepts by making small tactical
changes can, indeed, result in achieving an
important objective. And regardless of whether
achieving that objective supports the intended
strategic goal or produces a surprising
alternative result, it is worth the effort because…
it’s fun.

NOTES

1. Patrick Bateson, “Playfulness and Creativity,” ScienceDirect 25, no. 1 (Jan 2015): R12-R16,
https://www.sciencedirect.com/science/article/pii/S0960982214011245.

2. Bernard L. De Koven, “The Underrated Importance of Being Playful,” Psychology Today,
August 6, 2015, https://www.psychologytoday.com/us/blog/having-fun/201508/the-underrated-
importance-being-playful; Bernard L. De Koven, “Survival of the Playfullest,” A Playful Path,
October 10, 2014, https://www.aplayfulpath.com/playfulness-is-survival-skill/.

3. Wikipedia contributors, “Faulty generalization,” Wikipedia, The Free Encyclopedia, https://en.
wikipedia.org/w/index.php?title=Faulty_generalization&oldid=841195109.

4. Wikipedia contributors, “Overfitting,” Wikipedia, The Free Encyclopedia, https://en.wikipedia.
org/w/index.php?title=Overfitting&oldid=864108319.

5. Wikipedia contributors, “Mathematical induction,” Wikipedia, The Free Encyclopedia, https://
en.wikipedia.org/w/index.php?title=Mathematical_induction&oldid=866872907 (accessed
November 7, 2018). This website gives more information about mathematical induction, including
the analogy with falling dominoes.

6. Wikipedia contributors, “Proof by contradiction,” Wikipedia, The Free Encyclopedia, https://en.
wikipedia.org/w/index.php?title=Proof_by_contradiction&oldid=864365322.

7. Wikipedia contributors, “Octal,” Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/
index.php?title=Octal&oldid=862649931. This website gives more information about octal (base
8) numbers as well as hexadecimal (base 16) and binary (base 2) numbers, including numeric
conversions between them.

8. Danny Kaye, “Inchworm Lyrics,” LyricWiki, http://lyrics.wikia.com/wiki/Danny_
Kaye:Inchworm.

9. Wikipedia contributors, “Change of Base Logarithm,” Wikipedia, The Free Encyclopedia,
https://proofwiki.org/wiki/Change_of_Base_of_Logarithm. This website provides a simple proof of
the logarithm change-of-base formula.

10. Wikipedia contributors, “Divisibility Rule,” Wikipedia, The Free Encyclopedia, https://en.
wikipedia.org/w/index.php?title=Divisibility_rule&oldid=865687326.

